[go: up one dir, main page]

login
Revision History for A253258 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Square array read by antidiagonals, j>=1, k>=1: T(j,k) is the j-th number n such that the symmetric representation of sigma(n) has at least a part with maximum width k.
(history; published version)
#50 by OEIS Server at Wed Oct 23 18:34:41 EDT 2024
LINKS

Hartmut F. W. Hoft, <a href="/A253258/b253258_1.txt">Table of n, a(n) for n = 1..820</a>

#49 by Sean A. Irvine at Wed Oct 23 18:34:41 EDT 2024
STATUS

proposed

approved

Discussion
Wed Oct 23
18:34
OEIS Server: Installed first b-file as b253258.txt.
#48 by Hartmut F. W. Hoft at Tue Oct 01 12:06:31 EDT 2024
STATUS

editing

proposed

#47 by Hartmut F. W. Hoft at Tue Oct 01 12:05:17 EDT 2024
EXAMPLE

List of row position of the smallest odd number in each width column:

width 1 2 3 4 5 6 7 8 9 10 11 12

row 1 3 18 74 26 139 132 125 276 604 237 466

-----

width 13 14 15 16 17 18 19 20

row 555 1065 837 1027 2911 3095 1063 1623

STATUS

proposed

editing

Discussion
Tue Oct 01
12:06
Hartmut F. W. Hoft: Andrew, I see your point and deleted those numbers.
#46 by Michel Marcus at Fri Sep 20 13:43:28 EDT 2024
STATUS

editing

proposed

Discussion
Fri Sep 20
14:00
Hartmut F. W. Hoft: those numbers give the row in the respective column for the first odd number in that column. I included those as data support for the conjecture in the comments
Mon Sep 30
15:48
Andrew Howroyd: I'd suggest not. (It's a slippery slope). If you think  1  3  18  74  26  139  132  125 is interesting enough, then create a sequence for it - otherwise leave it at just the conjecture. (People can conjecture there are primes in every row or squarefree numbers in every row and it can quickly gets out of hand: sequences within sequences are generally a bad idea).
#45 by Michel Marcus at Fri Sep 20 13:43:01 EDT 2024
EXAMPLE

1, 6, 60, 120, 360, ...

2, 12, 72, ...

3, 15, 84, ...

4, 18, ...

5, 20, ...

7, ...

...

. Dyck paths Cells Widths

. _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

. _ _ _ _ _ _ |_ |_|_|_|_|_ / / / /

. | |_ |_|_|_ / /

. |_ _ | |_|_|_| / / /

. | | |_| /

. | | |_| /

. | | |_| /

STATUS

proposed

editing

Discussion
Fri Sep 20
13:43
Michel Marcus: I don't see why you show sequence 1  3  18  74  26  139  132  125  276  604  237  466 in example section ?
#44 by Hartmut F. W. Hoft at Fri Sep 20 10:08:53 EDT 2024
STATUS

editing

proposed

#43 by Hartmut F. W. Hoft at Fri Sep 20 10:08:37 EDT 2024
COMMENTS

From Hartmut F. W. Hoft, Sep 20 2024: (Start)

Column T(j,1), j>=1, forms A174905 and is a permutation of A357581. Numbers T(j,k), j>=1 and k>1, form A005279. Conjecture: Every column of the square array contains odd numbers.

The sequence of smallest odd numbers in each column forms A347980. E.g., in column 12 the smallest odd number is T(466, 12) = 765765 = A347980(12) which is equivalent to A250068(765765) = 12. (End)

LINKS

Hartmut F. W. Hoft, <a href="/A253258/b253258_1.txt">Table of n, a(n) for n = 1..820</a>

EXAMPLE

From Hartmut F. W. Hoft, Sep 20 2024: (Start)

Extending the terms T(j,k) to a 12x12 square array:

j\k 1 2 3 4 5 6 7 8 9 10 11 12

--------------------------------------------------------------

1 | 1 6 60 120 360 840 3360 2520 5040 10080 15120 32760

2 | 2 12 72 180 420 1080 3600 5544 7560 12600 20160 36960

3 | 3 15 84 240 720 1260 3780 6300 9240 13860 25200 39600

4 | 4 18 90 252 1008 1440 3960 6720 10920 15840 35280 41580

5 | 5 20 126 336 1200 1680 4200 6930 11880 16380 40320 43680

6 | 7 24 140 378 1320 1800 4320 7140 14040 16800 42840 45360

7 | 8 28 144 432 1512 1980 4620 7920 16632 18480 46800 46200

8 | 9 30 168 480 1560 2016 4680 8190 17160 18900 47880 47520

9 | 10 35 198 504 1848 2100 5280 8400 17640 21420 56160 49140

10| 11 36 210 540 1890 2160 5400 9360 18720 21840 56700 51480

11| 13 40 216 594 2184 2340 5460 10296 19800 22680 57120 52920

12| 14 42 264 600 2310 2640 5940 10800 20790 23760 57960 54600

...

List of row position of the smallest odd number in each width column:

width 1 2 3 4 5 6 7 8 9 10 11 12

row 1 3 18 74 26 139 132 125 276 604 237 466

-----

width 13 14 15 16 17 18 19 20

row 555 1065 837 1027 2911 3095 1063 1623

(End)

MATHEMATICA

(* Computing table T(j, k) of size mxn with bound b *)

eP[n_] := If[EvenQ[n], FactorInteger[n][[1, 2]], 0]+1

sDiv[n_] := Module[{d=Select[Divisors[n], OddQ]}, Select[Union[d, d*2^eP[n]], #<=row[n]&]]

mWidth[n_] :=Max[FoldList[#1+If[OddQ[#2], 1, -1]&, sDiv[n]]]

t253258[{m_, n_}, b_] := Module[{s=Table[0, {i, m+1}, {j, n}], k=1, w, f}, While[k<=b, w=mWidth[k]; If[w<=n, f=s[[m+1, w]]; If[f<m, s[[f+1, w]]=k; s[[m+1, w]]=f+1]]; k++]; Most[s]]

t253258[{12, 12}, 60000] (* Hartmut F. W. Hoft, Sep 20 2024 *)

CROSSREFS
STATUS

approved

editing

#42 by Michel Marcus at Sat Jan 12 03:31:33 EST 2019
STATUS

reviewed

approved

#41 by Joerg Arndt at Sat Jan 12 02:44:39 EST 2019
STATUS

proposed

reviewed