OFFSET
1,2
COMMENTS
This is a permutation of the natural numbers.
Row 1 gives A250070.
For more information about the widths of the symmetric representation of sigma see A249351 and A250068.
The next term: 120 < T(2,4) < 360.
From Hartmut F. W. Hoft, Sep 20 2024: (Start)
LINKS
EXAMPLE
The corner of the square array T(j,k) begins:
1, 6, 60, 120, 360, ...
2, 12, 72, ...
3, 15, 84, ...
4, 18, ...
5, 20, ...
7, ...
...
For j = 1 and k = 2; T(1,2) is the first number n such that the symmetric representation of sigma(n) has a part with maximum width 2 as shown below:
.
Dyck paths Cells Widths
_ _ _ _ _ _ _ _
_ _ _ |_ |_|_|_|_|_ / / / /
| |_ |_|_|_ / /
|_ _ | |_|_|_| / / /
| | |_| /
| | |_| /
| | |_| /
.
The widths of the symmetric representation of sigma(6) = 12 are [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1], also the 6th row of triangle A249351.
From Hartmut F. W. Hoft, Sep 20 2024: (Start)
Extending the terms T(j,k) to a 12x12 square array:
j\k 1 2 3 4 5 6 7 8 9 10 11 12
--------------------------------------------------------------
1 | 1 6 60 120 360 840 3360 2520 5040 10080 15120 32760
2 | 2 12 72 180 420 1080 3600 5544 7560 12600 20160 36960
3 | 3 15 84 240 720 1260 3780 6300 9240 13860 25200 39600
4 | 4 18 90 252 1008 1440 3960 6720 10920 15840 35280 41580
5 | 5 20 126 336 1200 1680 4200 6930 11880 16380 40320 43680
6 | 7 24 140 378 1320 1800 4320 7140 14040 16800 42840 45360
7 | 8 28 144 432 1512 1980 4620 7920 16632 18480 46800 46200
8 | 9 30 168 480 1560 2016 4680 8190 17160 18900 47880 47520
9 | 10 35 198 504 1848 2100 5280 8400 17640 21420 56160 49140
10| 11 36 210 540 1890 2160 5400 9360 18720 21840 56700 51480
11| 13 40 216 594 2184 2340 5460 10296 19800 22680 57120 52920
12| 14 42 264 600 2310 2640 5940 10800 20790 23760 57960 54600
...
(End)
MATHEMATICA
(* Computing table T(j, k) of size mxn with bound b *)
eP[n_] := If[EvenQ[n], FactorInteger[n][[1, 2]], 0]+1
sDiv[n_] := Module[{d=Select[Divisors[n], OddQ]}, Select[Union[d, d*2^eP[n]], #<=row[n]&]]
mWidth[n_] :=Max[FoldList[#1+If[OddQ[#2], 1, -1]&, sDiv[n]]]
t253258[{m_, n_}, b_] := Module[{s=Table[0, {i, m+1}, {j, n}], k=1, w, f}, While[k<=b, w=mWidth[k]; If[w<=n, f=s[[m+1, w]]; If[f<m, s[[f+1, w]]=k; s[[m+1, w]]=f+1]]; k++]; Most[s]]
t253258[{12, 12}, 60000] (* Hartmut F. W. Hoft, Sep 20 2024 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Jul 08 2015
EXTENSIONS
More terms from Charlie Neder, Jan 11 2019
STATUS
approved