[go: up one dir, main page]

login
A250068
Maximum width of any region in the symmetric representation of sigma(n).
27
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2
OFFSET
1,6
COMMENTS
Since the width of the single region of the symmetric representation of sigma( 2^ceiling((p-1)*(log_2 3) - 1) * 3^(p-1) ), for prime number p, at the diagonal equals p, this sequence contains an increasing subsequence (see A250071).
a(n) is also the number of layers of width 1 in the symmetric representation of sigma(n). For more information see A001227. - Omar E. Pol, Dec 13 2016
LINKS
FORMULA
a(n) = max_{k=1..floor((sqrt(8*n+1) - 1)/2)} (Sum_{j=1..k}(-1)^(j+1)*A237048(n, j)), for n >= 1.
EXAMPLE
a(6) = 2 since the sequence of widths at each unit step in the symmetric representation of sigma(6) = 12 is 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1. For visual examples see A237270, A237593 and sequences referenced in these.
MATHEMATICA
(* function a2[ ] is defined in A249223 *)
a250068[n_]:=Max[a2[n]]
a250068[{m_, n_}]:=Map[a250068, Range[m, n]]
a250068[{1, 100}](* data *)
PROG
(PARI) t237048(n, k) = if (k % 2, (n % k) == 0, ((n - k/2) % k) == 0);
kmax(n) = (sqrt(1+8*n)-1)/2;
t249223(n, k) = sum(j=1, k, (-1)^(j+1)*t237048(n, j));
a(n) = my(wm = t249223(n, 1)); for (k=2, kmax(n), wm = max(wm, t249223(n, k))); wm; \\ Michel Marcus, Sep 20 2015
KEYWORD
nonn
AUTHOR
Hartmut F. W. Hoft, Nov 11 2014
STATUS
approved