[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A073374 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Fourth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
(history; published version)
#14 by Joerg Arndt at Fri Sep 30 01:45:33 EDT 2022
STATUS

reviewed

approved

#13 by Kevin Ryde at Fri Sep 30 01:34:12 EDT 2022
STATUS

proposed

reviewed

#12 by G. C. Greubel at Thu Sep 29 14:49:03 EDT 2022
STATUS

editing

proposed

#11 by G. C. Greubel at Thu Sep 29 14:48:59 EDT 2022
LINKS

G. C. Greubel, <a href="/A073374/b073374.txt">Table of n, a(n) for n = 0..1000</a>

<a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (5,0,-30,15,81,-30,-120,0,80,32).

FORMULA

a(n) = sum(Sum_{k=0..n} b(k)*c(n-k), k=0..n) with b(k) := A001045(k+1) and c(k) := A073373(k).

a(n) = sumSum_{k=0..floor(n/2)} binomial(n-k+4, 4) * binomial(n-k, k) * 2^k, k=0..floor(n/2)).

a(n) = (5*(2968 +1974*n +411*n^2 +27*n^3)*(n+1)*U(n+1) + 2*(9412 +6099*n +1248*n^2 +81*n^3)*(n+2)*U(n))/(4!*3^7) with U(n) := A001045(n+1), n>=0.

G.f.: 1/(1-(1+2*x)*x)^5 = 1/((1+x)*(1-2*x))^5.

E.g.f.: (1/157464)*(512*(263 + 1104*x + 1026*x^2 + 306*x^3 + 27*x^4)*exp(2*x) + (22808 - 24432*x + 7344*x^2 - 792*x^3 + 27*x^4)*exp(-x)). - G. C. Greubel, Sep 29 2022

MATHEMATICA

Table[(2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464, {n, 0, 40}] (* G. C. Greubel, Sep 29 2022 *)

PROG

(Magma) [(2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464: n in [0..40]]; // G. C. Greubel, Sep 29 2022

(SageMath)

def A073374(n): return (2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464

[A073374(n) for n in range(40)] # G. C. Greubel, Sep 29 2022

CROSSREFS
STATUS

approved

editing

#10 by N. J. A. Sloane at Sun Mar 02 02:38:29 EST 2014
STATUS

reviewed

approved

#9 by Michel Marcus at Sun Mar 02 01:48:32 EST 2014
STATUS

proposed

reviewed

#8 by Wesley Ivan Hurt at Sun Mar 02 00:22:06 EST 2014
STATUS

editing

proposed

#7 by Wesley Ivan Hurt at Sun Mar 02 00:21:56 EST 2014
FORMULA

a(n) = sum(b(k)*c(n-k), k=0..n) with b(k) := A001045(k+1) and c(k) := A073373(k).

a(n) = sum(binomial(n-k+4, 4) * binomial(n-k, k) * 2^k, k=0..floor(n/2)).

a(n) = (5*(2968+1974*n+411*n^2+27*n^3)*(n+1)*U(n+1)+2*(9412+6099*n+1248*n^2 +81*n^3)*(n+2)*U(n))/(4!*3^7) with U(n) := A001045(n+1), n>=0.

STATUS

proposed

editing

#6 by Jon E. Schoenfield at Sun Mar 02 00:04:15 EST 2014
STATUS

editing

proposed

#5 by Jon E. Schoenfield at Sun Mar 02 00:04:13 EST 2014
AUTHOR

Wolfdieter Lang, Aug 2, 02 2002

STATUS

approved

editing