reviewed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A073374/b073374.txt">Table of n, a(n) for n = 0..1000</a>
<a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (5,0,-30,15,81,-30,-120,0,80,32).
a(n) = sum(Sum_{k=0..n} b(k)*c(n-k), k=0..n) with b(k) := A001045(k+1) and c(k) := A073373(k).
a(n) = sumSum_{k=0..floor(n/2)} binomial(n-k+4, 4) * binomial(n-k, k) * 2^k, k=0..floor(n/2)).
a(n) = (5*(2968 +1974*n +411*n^2 +27*n^3)*(n+1)*U(n+1) + 2*(9412 +6099*n +1248*n^2 +81*n^3)*(n+2)*U(n))/(4!*3^7) with U(n) := A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^5 = 1/((1+x)*(1-2*x))^5.
E.g.f.: (1/157464)*(512*(263 + 1104*x + 1026*x^2 + 306*x^3 + 27*x^4)*exp(2*x) + (22808 - 24432*x + 7344*x^2 - 792*x^3 + 27*x^4)*exp(-x)). - G. C. Greubel, Sep 29 2022
Table[(2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464, {n, 0, 40}] (* G. C. Greubel, Sep 29 2022 *)
(Magma) [(2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464: n in [0..40]]; // G. C. Greubel, Sep 29 2022
(SageMath)
def A073374(n): return (2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464
[A073374(n) for n in range(40)] # G. C. Greubel, Sep 29 2022
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
proposed
editing
editing
proposed
Wolfdieter Lang, Aug 2, 02 2002
approved
editing