[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073373
Third convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
3
1, 4, 18, 60, 195, 576, 1644, 4488, 11925, 30860, 78278, 195012, 478599, 1159080, 2774880, 6575280, 15439065, 35955540, 83118970, 190862860, 435601611, 988620624, 2232236628, 5016441240, 11224087965
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} b(k) * c(n-k), with b(k) = A001045(k+1) and c(k) = A073372(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+3, 3) * binomial(n-k, k) * 2^k.
a(n) = ((350+177*n+21*n^2)*(n+1)*U(n+1) + 2*(277+132*n+15*n^2)*(n+2)*U(n))/ (2*9^3) with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^4 = 1/ ( (1+x)^4*(1-2*x)^4 ).
E.g.f.: (1/4374)*(32*(113 + 366*x + 234*x^2 + 36*x^3)*exp(2*x) - (-758 + 690*x - 153*x^2 + 9*x^3)*exp(-x)). - G. C. Greubel, Sep 29 2022
MATHEMATICA
Table[(1/4374)*(2^(n+4)*(226 +267*n +90*n^2 +9*n^3) +(-1)^n*(758 +555*n +126*n^2 +9*n^3)), {n, 0, 40}] (* G. C. Greubel, Sep 29 2022 *)
PROG
(Magma) [(1/4374)*(2^(n+4)*(226 +267*n +90*n^2 +9*n^3) +(-1)^n*(758 +555*n +126*n^2 +9*n^3)): n in [0..40]]; // G. C. Greubel, Sep 29 2022
(SageMath)
def A073373(n): return (1/4374)*(2^(n+4)*(226+267*n+90*n^2+9*n^3) +(-1)^n*(758 +555*n+126*n^2+9*n^3))
[A073373(n) for n in range(40)] # G. C. Greubel, Sep 29 2022
CROSSREFS
Fourth (m=3) column of triangle A073370.
Sequence in context: A212521 A278406 A192069 * A292465 A227162 A057414
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved