[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073374
Fourth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
3
1, 5, 25, 95, 340, 1106, 3430, 10130, 28915, 80035, 216143, 571225, 1482110, 3783640, 9522740, 23665300, 58149845, 141435985, 340854645, 814589475, 1931900376, 4549699950, 10645737330, 24761578470
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073373(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, 4) * binomial(n-k, k) * 2^k.
a(n) = (5*(2968 +1974*n +411*n^2 +27*n^3)*(n+1)*U(n+1) + 2*(9412 +6099*n +1248*n^2 +81*n^3)*(n+2)*U(n))/(4!*3^7) with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^5 = 1/((1+x)*(1-2*x))^5.
E.g.f.: (1/157464)*(512*(263 + 1104*x + 1026*x^2 + 306*x^3 + 27*x^4)*exp(2*x) + (22808 - 24432*x + 7344*x^2 - 792*x^3 + 27*x^4)*exp(-x)). - G. C. Greubel, Sep 29 2022
MATHEMATICA
Table[(2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464, {n, 0, 40}] (* G. C. Greubel, Sep 29 2022 *)
PROG
(Magma) [(2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464: n in [0..40]]; // G. C. Greubel, Sep 29 2022
(SageMath)
def A073374(n): return (2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464
[A073374(n) for n in range(40)] # G. C. Greubel, Sep 29 2022
CROSSREFS
Fifth (m=4) column of triangle A073370.
Sequence in context: A228457 A213293 A203184 * A126878 A203340 A055343
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved