[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355489
Numbers k such that A000120(k) = A007814(k) + 2.
4
3, 5, 9, 14, 17, 22, 26, 33, 38, 42, 50, 60, 65, 70, 74, 82, 92, 98, 108, 116, 129, 134, 138, 146, 156, 162, 172, 180, 194, 204, 212, 228, 248, 257, 262, 266, 274, 284, 290, 300, 308, 322, 332, 340, 356, 376, 386, 396, 404, 420, 440, 452, 472, 488, 513, 518
OFFSET
1,1
COMMENTS
Each term k, doubled, can be put into a one-to-one correspondence with a maximal Schreier set (a subset of the positive integers with cardinality equal to the minimum element in the set) by interpreting the 1-based position of the ones in the binary expansion of 2*k (where position 1 corresponds to the least significant bit) as the elements of the corresponding maximal Schreier set. See A373556 for more information. Cf. also A371176. - Paolo Xausa, Jun 13 2024
FORMULA
a(n) = a(n-1) + b(n) for n > 1 with a(1) = 3 where b(n) = {2^(n-1) if n < 4; 5 if c(n-1) = 1; otherwise 2*b(n - A000045(A072649(n-1) + 1)) - [c(n) = 1]} and where c(n) = A010056(n).
A025480(a(n)-1) = A048679(n) for n > 0.
a(A000045(n)) = 2^(n-1) + 1 for n > 1.
MATHEMATICA
Select[Range[500], DigitCount[#, 2, 1] == IntegerExponent[#, 2] + 2 &] (* Amiram Eldar, Jul 04 2022 *)
PROG
(PARI) r=quadgen(5);
A355489_upto(nMax)={my(v1, v2, v3, v4); v1=vector(nMax, i, 0); v1[1]=1; for(i=1, nMax-1, v1[i+1]=v1[i\r+1]+1); v2=vector(nMax, i, 0); v2[1]=1; for(i=2, nMax, v2[i]=v1[i]-v1[i-1]); v3=vector(nMax, i, 0); for(i=1, 3, v3[i]=2^(i-1)); for(i=4, nMax, v3[i]=if(v2[i-1]==1, 5, 2*v3[i-fibonacci(v1[i-1]+1)]-if(v2[i]==1, 1, 0))); v4=vector(nMax, i, 0); v4[1]=3; for(i=2, nMax, v4[i]=v4[i-1]+v3[i]); v4}
(PARI) isok(k) = hammingweight(k) == valuation(k, 2) + 2; \\ Michel Marcus, Jul 06 2022
(Python 3.10+)
from itertools import count, islice
def A355489_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:n.bit_count()==(n&-n).bit_length()+1, count(max(startvalue, 1)))
A355480_list = list(islice(A355489_gen(), 30)) # Chai Wah Wu, Jul 15 2022
KEYWORD
nonn,base
AUTHOR
Mikhail Kurkov, Jul 04 2022 [verification needed]
STATUS
approved