[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355486
a(n) is the number of total solutions (minus the n-th prime) to x^y == y^x (mod p) where 0 < x,y <= p and p is the n-th prime.
2
0, 0, 2, 10, 10, 16, 22, 40, 56, 48, 70, 64, 66, 74, 114, 130, 118, 122, 138, 168, 220, 174, 158, 270, 242, 242, 234, 212, 238, 308, 284, 272, 334, 296, 318, 332, 424, 364, 368, 416, 370, 470, 524, 510, 464, 474, 552, 542, 480, 604, 586, 554, 768, 578, 752, 618, 628, 880, 752, 634, 702, 606, 846
OFFSET
1,3
FORMULA
a(n) = A355419(n) - A000040(n).
a(n) = 2*(number of solutions to x^y == y^x (mod p) where 1 < x < y < p). - Chai Wah Wu, Aug 30 2022
MAPLE
f:= proc(n) local p, x, y, t;
p:= ithprime(n);
t:= 0;
for x from 2 to p-1 do
for y from x+1 to p-1 do
if x&^y - y&^x mod p = 0 then t:= t+1 fi
od od:
2*t
end proc:
map(f, [$1..100]); # Robert Israel, Aug 31 2022
PROG
(Python)
from sympy import prime
def f(n):
S = 0
for x in range(1, n + 1):
for y in range(x + 1 , n + 1):
if ((pow(x, y, n) == pow(y, x, n))):
S += 2
return S
def a(n): return f(prime(n))
(Python)
from sympy import prime
def A355486(n):
p = prime(n)
return sum(2 for x in range(2, p-1) for y in range(x+1, p) if pow(x, y, p)==pow(y, x, p)) # Chai Wah Wu, Aug 30 2022
CROSSREFS
Sequence in context: A066556 A156556 A071808 * A168381 A212621 A156780
KEYWORD
nonn
AUTHOR
Darío Clavijo, Jul 04 2022
EXTENSIONS
More terms from Robert Israel, Aug 31 2022
STATUS
approved