[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371176
Numbers k such that A000120(k) <= A001511(k).
9
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 32, 34, 36, 40, 44, 48, 52, 56, 64, 66, 68, 72, 76, 80, 84, 88, 96, 100, 104, 112, 120, 128, 130, 132, 136, 140, 144, 148, 152, 160, 164, 168, 176, 184, 192, 196, 200, 208, 216, 224, 232, 240, 256, 258, 260, 264, 268
OFFSET
1,2
COMMENTS
It appears that this sequence is obtained when ordering Schreier sets as explained in the Bird link. See decM(n) PARI code. - Michel Marcus, May 31 2024
That is correct since the binary representation of these numbers can be put into 1-to-1 correspondence with Schreier sets, which satisfy |X| <= min X, using the indicator function of X as the bits (starting from the right, LSB). The reason is that A000120 then computes |X| and A001511 computes min X. For example, the Schreier set X = {2, 5} can be mapped to 10010_2 = 18. - Michael S. Branicky, May 31 2024
From David A. Corneth, May 31 2024: (Start)
If k is in the sequence then so is 2*k.
a(A000045(k)) = 2^(k-2) for k >= 2. (End)
Apart from a(1), all terms are even. - Paolo Xausa, May 31 2024
Zeckendorf representation of n with rewrite 0 -> 0, {0, 1} -> 1 and k-1 zeros appended to the right side (where k is the number of ones in the given representation) and then interpreted as binary expansion is the same as a(n) (see the first formula). - Mikhail Kurkov, Oct 21 2024
LINKS
Alistair Bird, Jozef Schreier, Schreier sets and the Fibonacci sequence, Out Of The Norm blog, May 13 2012.
FORMULA
a(n) = b(n)*A001316(b(n))/2 where b(n) = A048679(n).
a(n) = Sum_{i=0..n-1} 2^A213911(i).
a(n) = 2^(A072649(n) - 1) + [c(n) > 0]*2*a(c(n)) where c(n) = A066628(n).
a(n) = 2*a(A005206(n)) - A003849(n)*2^A007895(n-1) for n > 1 with a(1) = 1.
MAPLE
filter:= proc(n) convert(convert(n, base, 2), `+`) <= 1+padic:-ordp(n, 2) end proc:
select(filter, [1, seq(i, i=2..1000, 2)]); # Robert Israel, Oct 20 2024
MATHEMATICA
Join[{1}, Select[Range[2, 1000, 2], DigitCount[#, 2, 1] <= IntegerExponent[#, 2] + 1 &]] (* Paolo Xausa, May 31 2024 *)
PROG
(PARI) isok(n) = hammingweight(n) <= (valuation(n, 2) + 1)
(PARI) M(n) = my(list=List()); for (i=1, n, forsubset(i, s, my(bOk = if (#s && (vecmax(s) == n), #s <= vecmin(s), 0)); if (bOk, listput(list, vecsort(Vec(s), , 4))); ); ); Vec(list);
decM(nn) = my(v = vector(nn, k, M(k)), list=List()); for (i=1, #v, my(vi = v[i]); for (j=1, #vi, my(s = vecsort(vi[j]), slist=List(), m = vecmax(s)); forstep(k=m, 1, -1, listput(slist, sign(vecsearch(s, k)))); listput(list, fromdigits(Vec(slist), 2)); ); ); vecsort(Vec(list)); \\ Michel Marcus, May 31 2024
(Python)
def ok(n): return n.bit_count() <= (-n&n).bit_length()
print([k for k in range(1, 300) if ok(k)]) # Michael S. Branicky, May 31 2024
(Python) # Assuming the list starts with 0.
def a():
n = na = nb = 1
while True:
yield not(nb < (na - 1) << 1)
nb, na = na, n.bit_count()
n += 1
aList = a(); print([n for n in range(77) if next(aList)]) # Peter Luschny, Jun 07 2024
KEYWORD
nonn,base
AUTHOR
Mikhail Kurkov, Mar 14 2024
STATUS
approved