[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292465
a(n) = n*F(n)*F(n+1), where F = A000045.
1
0, 1, 4, 18, 60, 200, 624, 1911, 5712, 16830, 48950, 140976, 402624, 1141933, 3219580, 9031050, 25219824, 70153016, 194466672, 537404835, 1480993800, 4071156726, 11165970794, 30561658848, 83490220800, 227687745625, 619938027124, 1685442626946, 4575973716132
OFFSET
0,3
COMMENTS
Inequality proposed by Bătineţu-Giurgiu and Stanciu (see References): Let {x(n)}_{n>=1} be a sequence of real numbers. Prove that 2*(Sum_{k=1..n} F(k)*sin(x(k)))*(Sum_{k=1..n} F(k)*cos(x(k))) <= n*F(n)*F(n+1).
LINKS
D. M. Bătineţu-Giurgiu and N. Stanciu, Problem B-1179, The Fibonacci Quarterly, Volume 53, Number 4 (November 2015), p. 366.
FORMULA
G.f.: x*(1 - 2*x + 3*x^2 - 6*x^3 + 6*x^4 - 2*x^5)/((1 - x)^2*(1 + x)^2*(1 - 3*x + x^2)^2).
MAPLE
with(combinat, fibonacci): A292465:=seq(n*fibonacci(n)*fibonacci(n+1), n=0..10^2); # Muniru A Asiru, Sep 26 2017
MATHEMATICA
Table[n Fibonacci[n] Fibonacci[n+1], {n, 0, 30}]
PROG
(Magma) [n*Fibonacci(n)*Fibonacci(n+1): n in [0..35]];
(PARI) a(n) = n*fibonacci(n)*fibonacci(n+1); \\ Altug Alkan, Sep 17 2017
(GAP)
A292465:=List([0..10^3], n->n*Fibonacci(n)*Fibonacci(n+1)); # Muniru A Asiru, Sep 26 2017
CROSSREFS
Sequence in context: A278406 A192069 A073373 * A227162 A057414 A165910
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 17 2017
STATUS
approved