[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292463
Number of partitions of n with n kinds of 1.
9
1, 1, 4, 14, 51, 188, 702, 2644, 10026, 38223, 146359, 562456, 2168134, 8379539, 32459199, 125984039, 489837300, 1907490728, 7438346255, 29042470132, 113522618066, 444199913556, 1739735079466, 6819657196928, 26753893533257, 105034060120469, 412637434996367
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] 1/(1-x)^n * 1/Product_{j=2..n} (1-x^j).
a(n) is n-th term of the Euler transform of n,1,1,1,... .
a(n) ~ c * 4^n / sqrt(n), where c = QPochhammer[-1, 1/2] / (8*sqrt(Pi) * QPochhammer[1/4, 1/4]) = 0.48841139329043831428669851139824427133317... - Vaclav Kotesovec, Sep 19 2017
Equivalently, c = 1/(4*sqrt(Pi)*QPochhammer(1/2)). - Vaclav Kotesovec, Mar 17 2024
EXAMPLE
a(2) = 4: 2, 1a1a, 1a1b, 1b1b.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
end:
a:= n-> b(n$3):
seq(a(n), n=0..30);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)+k-1)*b(n-j, k), j=1..n)/n)
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
# third Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=1,
combinat[numbpart](n), b(n-1, k) +b(n, k-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
MATHEMATICA
Table[SeriesCoefficient[1/(1-x)^(n-1) * Product[1/(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 19 2017 *)
CROSSREFS
Main diagonal of A292508.
Sequence in context: A283108 A211303 A247415 * A371870 A149488 A058692
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 16 2017
STATUS
approved