[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283330
a(n) = (1 + Sum_{j=1..K-1} a(n-j) + a(n-1)*a(n-K+1))/a(n-K) with a(1),...,a(K)=1, where K=5.
3
1, 1, 1, 1, 1, 6, 16, 41, 106, 806, 2311, 6126, 16066, 122401, 351136, 931006, 2441881, 18604041, 53370241, 141506681, 371149801, 2827691726, 8111925376, 21508084401, 56412327826, 429790538206, 1232959286791, 3269087322166, 8574302679706, 65325334115481
OFFSET
1,6
LINKS
Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, PhD Dissertation, Mathematics Department, Rutgers University, May 2016; see also.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,153,0,0,0,-153,0,0,0,1).
FORMULA
From Seiichi Manyama, Mar 18 2017: (Start)
a(4*n-1) = 3*a(4*n-2) - a(4*n-3) - 1,
a(4*n) = 3*a(4*n-1) - a(4*n-2) - 1,
a(4*n+1) = 3*a(4*n) - a(4*n-1) - 1,
a(4*n+2) = 8*a(4*n+1) - a(4*n) - 1. (End)
From Colin Barker, Nov 03 2020: (Start)
G.f.: x*(1 + x + x^2 + x^3 - 152*x^4 - 147*x^5 - 137*x^6 - 112*x^7 + 106*x^8 + 41*x^9 + 16*x^10 + 6*x^11) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - 152*x^4 + x^8)).
a(n) = 153*a(n-4) - 153*a(n-8) + a(n-12) for n>12.
(End)
MATHEMATICA
a[n_] := a[n] = If[n <= 5, 1, With[{m = If[Mod[n, 4] == 2, 8, 3]}, m a[n-1] - a[n-2] - 1]];
Array[a, 30] (* Jean-François Alcover, Nov 03 2020 *)
PROG
(Ruby)
def A(k, n)
a = Array.new(k, 1)
ary = [1]
while ary.size < n
j = (1..k - 1).inject(1){|s, i| s + a[-i]} + a[1] * a[-1]
break if j % a[0] > 0
a = *a[1..-1], j / a[0]
ary << a[0]
end
ary
end
def A283330(n)
A(5, n)
end # Seiichi Manyama, Mar 18 2017
CROSSREFS
Sequence in context: A347642 A073570 A283960 * A263325 A107614 A317758
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 17 2017
EXTENSIONS
More terms from Seiichi Manyama, Mar 17 2017
STATUS
approved