[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283960
a(n) = (Sum_{j=1..h-1} a(n-j) + a(n-1)*a(n-h+1))/a(n-h) with a(1), ..., a(h)=1, where h = 6.
3
1, 1, 1, 1, 1, 1, 6, 16, 41, 106, 276, 2101, 6026, 15976, 41901, 109726, 835906, 2397991, 6358066, 16676206, 43670551, 332688201, 954394051, 2530493951, 6637087801, 17380769451, 132409067806, 379846433966, 1007130234091, 2641544268306, 6917502570826, 52698476298301
OFFSET
1,7
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,399,0,0,0,0,-399,0,0,0,0,1).
FORMULA
a(5*k-2) = 3*a(5*k-3) - a(5*k-4) - 1,
a(5*k-1) = 3*a(5*k-2) - a(5*k-3) - 1,
a(5*k) = 3*a(5*k-1) - a(5*k-2) - 1,
a(5*k+1) = 3*a(5*k) - a(5*k-1) - 1,
a(5*k+2) = 8*a(5*k+1) - a(5*k) - 1.
From Colin Barker, Nov 03 2020: (Start)
G.f.: x*(1 + x + x^2 + x^3 + x^4 - 398*x^5 - 393*x^6 - 383*x^7 - 358*x^8 - 293*x^9 + 276*x^10 + 106*x^11 + 41*x^12 + 16*x^13 + 6*x^14) / ((1 - x)*(1 + x + x^2 + x^3 + x^4)*(1 - 398*x^5 + x^10)).
a(n) = 399*a(n-5) - 399*a(n-10) + a(n-15) for n>15.
(End)
MATHEMATICA
a[n_]:= If[n<7, 1, (Sum[a[n-j] , {j, 5}] + a[n - 1] a[n - 5])/a[n - 6]]; Table[a[n], {n, 30}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) a(n) = if(n<7, 1, (sum(j=1, 5, a(n - j)) + a(n - 1)*a(n - 5))/a(n - 6));
for(n=1, 30, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A072881 (h=3), A283958 (h=4), A283959 (h=5), this sequence (h=6).
Sequence in context: A261819 A347642 A073570 * A283330 A263325 A107614
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved