[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272124
a(n) = 12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1.
2
1, 43, 369, 1507, 4273, 9771, 19393, 34819, 58017, 91243, 137041, 198243, 277969, 379627, 506913, 663811, 854593, 1083819, 1356337, 1677283, 2052081, 2486443, 2986369, 3558147, 4208353, 4943851, 5771793, 6699619, 7735057, 8886123, 10161121, 11568643
OFFSET
0,2
LINKS
M. Beck, J. A. De Loera, M. Develin, J. Pfeifle and R. P. Stanley, Coefficients and roots of Ehrhart Polynomials, Contemp. Math. 374 (2005), 15-36, page 19.
FORMULA
O.g.f.: (1+38*x+164*x^2+82*x^3+3*x^4)/(1-x)^5.
E.g.f.: (1+42*x+142*x^2+88*x^3+12*x^4)*exp(x).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
a(n) mod 4 = a(n) mod 8 = A010684(n). - Wesley Ivan Hurt, Apr 22 2016
MAPLE
A272124:=n->(12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1): seq(A272124(n), n=0..60); # Wesley Ivan Hurt, Apr 22 2016
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 43, 369, 1507, 4273}, 50]
CoefficientList[Series[(1 + 38*x + 164*x^2 + 82*x^3 + 3*x^4)/(1 - x)^5, {x, 0, 30}], x] (* Wesley Ivan Hurt, Apr 22 2016 *)
PROG
(Magma) [12*n^4+16*n^3+10*n^2+4*n+1: n in [0..50]]
(PARI) vector(100, n, n--; 12*n^4+16*n^3+10*n^2+4*n+1) \\ Altug Alkan, Apr 22 2016
CROSSREFS
Sequence in context: A164783 A291861 A142502 * A340199 A361891 A142770
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 21 2016
STATUS
approved