OFFSET
0,2
COMMENTS
Hankel transform is [1,-8,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Mar 29 2007
Binomial transform gives [1,4,8,16,32,64,...] (A151821(n+1)). - Philippe Deléham, Sep 17 2009
Continued fraction expansion of (3+sqrt(21))/6. - Klaus Brockhaus, May 04 2010
Positive sum of the coordinates from the image of the point (1,-2) after n 90-degree rotations about the origin. - Wesley Ivan Hurt, Jul 06 2013
This sequence can be generated by an infinite number of formulas having the form a^(b*n) mod c where a is congruent to 3 mod 4 and b is any odd number. If a is congruent to 3 mod 4 then c can be 4; if a is also congruent to 3 mod 8 then c can be 8. For example: a(n)= 15^(3*n) mod 4, a(n) = 19^(5*n) mod 4, a(n) = 19^(5*n) mod 8. - Gary Detlefs, May 19 2014
This sequence is also the unsigned periodic Schick sequence for p = 5. See the Schick reference, p. 158, for p = 5.- Wolfdieter Lang, Apr 03 2020
Digits following the decimal point when 1/3 is converted to base 5. - Jamie Robert Creasey, Oct 15 2021
REFERENCES
Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.
LINKS
FORMULA
From Paul Barry, Apr 29 2003: (Start)
a(n) = 2-(-1)^n.
G.f.: (1+3x)/((1-x)(1+x)).
E.g.f.: 2*exp(x) - exp(-x). (End)
a(n) = 3^(n mod 2). - Jaume Oliver Lafont, Mar 27 2009
a(n) = 7^n mod 4. - Vincenzo Librandi, Feb 07 2011
a(n) = 1 + 2*(n mod 2). - Wesley Ivan Hurt, Jul 06 2013
MAPLE
[seq (modp((2*n+1), 4), n=0..80)]; # Zerinvary Lajos, Nov 30 2006
MATHEMATICA
Table[2-(-1)^n, {n, 0, 100}] (* Wesley Ivan Hurt, Mar 24 2014 *)
PROG
(Sage) [power_mod(3, n, 8)for n in range(0, 81)] # Zerinvary Lajos, Nov 24 2009
(PARI) a(n)=1+n%2*2 \\ Charles R Greathouse IV, Dec 28 2011
(Python)
def A010684(n): return 3 if n&1 else 1 # Chai Wah Wu, Jan 17 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved