Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:46:16
%S 1,43,369,1507,4273,9771,19393,34819,58017,91243,137041,198243,277969,
%T 379627,506913,663811,854593,1083819,1356337,1677283,2052081,2486443,
%U 2986369,3558147,4208353,4943851,5771793,6699619,7735057,8886123,10161121,11568643
%N a(n) = 12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1.
%H M. Beck, J. A. De Loera, M. Develin, J. Pfeifle and R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/papers/ehrhart.pdf">Coefficients and roots of Ehrhart Polynomials</a>, Contemp. Math. 374 (2005), 15-36, page 19.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F O.g.f.: (1+38*x+164*x^2+82*x^3+3*x^4)/(1-x)^5.
%F E.g.f.: (1+42*x+142*x^2+88*x^3+12*x^4)*exp(x).
%F a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
%F a(n) mod 4 = a(n) mod 8 = A010684(n). - _Wesley Ivan Hurt_, Apr 22 2016
%p A272124:=n->(12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1): seq(A272124(n), n=0..60); # _Wesley Ivan Hurt_, Apr 22 2016
%t LinearRecurrence[{5, -10, 10, -5, 1}, {1, 43, 369, 1507, 4273}, 50]
%t CoefficientList[Series[(1 + 38*x + 164*x^2 + 82*x^3 + 3*x^4)/(1 - x)^5, {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Apr 22 2016 *)
%o (Magma) [12*n^4+16*n^3+10*n^2+4*n+1: n in [0..50]]
%o (PARI) vector(100, n, n--; 12*n^4+16*n^3+10*n^2+4*n+1) \\ _Altug Alkan_, Apr 22 2016
%Y Cf. A010684, A272039.
%K nonn,easy
%O 0,2
%A _Vincenzo Librandi_, Apr 21 2016