# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a253258 Showing 1-1 of 1 %I A253258 #50 Oct 23 2024 18:34:41 %S A253258 1,2,6,3,12,60,4,15,72,120,5,18,84,180,360,7,20,90,240,420,840,8,24, %T A253258 126,252,720,1080,3360,9,28,140,336,1008,1260,3600,2520,10,30,144,378, %U A253258 1200,1440,3780,5544,5040,11,35,168,432,1320,1680,3960,6300,7560,10080,13,36,198,480,1512,1800,4200,6720,9240,12600,15120 %N A253258 Square array read by antidiagonals, j>=1, k>=1: T(j,k) is the j-th number n such that the symmetric representation of sigma(n) has at least a part with maximum width k. %C A253258 This is a permutation of the natural numbers. %C A253258 Row 1 gives A250070. %C A253258 For more information about the widths of the symmetric representation of sigma see A249351 and A250068. %C A253258 The next term: 120 < T(2,4) < 360. %C A253258 From _Hartmut F. W. Hoft_, Sep 20 2024: (Start) %C A253258 Column T(j,1), j>=1, forms A174905 and is a permutation of A357581. Numbers T(j,k), j>=1 and k>1, form A005279. Conjecture: Every column of the square array contains odd numbers. %C A253258 The sequence of smallest odd numbers in each column forms A347980. E.g., in column 12 the smallest odd number is T(466, 12) = 765765 = A347980(12) which is equivalent to A250068(765765) = 12. (End) %H A253258 Hartmut F. W. Hoft, Table of n, a(n) for n = 1..820 %H A253258 Index entries for sequences that are permutations of the natural numbers %e A253258 The corner of the square array T(j,k) begins: %e A253258 1, 6, 60, 120, 360, ... %e A253258 2, 12, 72, ... %e A253258 3, 15, 84, ... %e A253258 4, 18, ... %e A253258 5, 20, ... %e A253258 7, ... %e A253258 ... %e A253258 For j = 1 and k = 2; T(1,2) is the first number n such that the symmetric representation of sigma(n) has a part with maximum width 2 as shown below: %e A253258 . %e A253258 Dyck paths Cells Widths %e A253258 _ _ _ _ _ _ _ _ %e A253258 _ _ _ |_ |_|_|_|_|_ / / / / %e A253258 | |_ |_|_|_ / / %e A253258 |_ _ | |_|_|_| / / / %e A253258 | | |_| / %e A253258 | | |_| / %e A253258 | | |_| / %e A253258 . %e A253258 The widths of the symmetric representation of sigma(6) = 12 are [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1], also the 6th row of triangle A249351. %e A253258 From _Hartmut F. W. Hoft_, Sep 20 2024: (Start) %e A253258 Extending the terms T(j,k) to a 12x12 square array: %e A253258 j\k 1 2 3 4 5 6 7 8 9 10 11 12 %e A253258 -------------------------------------------------------------- %e A253258 1 | 1 6 60 120 360 840 3360 2520 5040 10080 15120 32760 %e A253258 2 | 2 12 72 180 420 1080 3600 5544 7560 12600 20160 36960 %e A253258 3 | 3 15 84 240 720 1260 3780 6300 9240 13860 25200 39600 %e A253258 4 | 4 18 90 252 1008 1440 3960 6720 10920 15840 35280 41580 %e A253258 5 | 5 20 126 336 1200 1680 4200 6930 11880 16380 40320 43680 %e A253258 6 | 7 24 140 378 1320 1800 4320 7140 14040 16800 42840 45360 %e A253258 7 | 8 28 144 432 1512 1980 4620 7920 16632 18480 46800 46200 %e A253258 8 | 9 30 168 480 1560 2016 4680 8190 17160 18900 47880 47520 %e A253258 9 | 10 35 198 504 1848 2100 5280 8400 17640 21420 56160 49140 %e A253258 10| 11 36 210 540 1890 2160 5400 9360 18720 21840 56700 51480 %e A253258 11| 13 40 216 594 2184 2340 5460 10296 19800 22680 57120 52920 %e A253258 12| 14 42 264 600 2310 2640 5940 10800 20790 23760 57960 54600 %e A253258 ... %e A253258 (End) %t A253258 (* Computing table T(j,k) of size mxn with bound b *) %t A253258 eP[n_] := If[EvenQ[n], FactorInteger[n][[1, 2]], 0]+1 %t A253258 sDiv[n_] := Module[{d=Select[Divisors[n], OddQ]}, Select[Union[d, d*2^eP[n]], #<=row[n]&]] %t A253258 mWidth[n_] :=Max[FoldList[#1+If[OddQ[#2], 1, -1]&, sDiv[n]]] %t A253258 t253258[{m_, n_}, b_] := Module[{s=Table[0, {i, m+1}, {j, n}], k=1, w, f}, While[k<=b, w=mWidth[k]; If[w<=n, f=s[[m+1, w]]; If[f