[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236833
a(n) = number of times n occurs in A234741.
9
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 1, 2, 1, 1, 2, 1, 0, 1, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 4, 1, 2, 2, 0, 1, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 1, 4, 1, 1, 3, 1, 2, 1, 1, 3, 1, 6, 1, 0
OFFSET
0,6
COMMENTS
Number of distinct values k such that A234741(k) = n.
LINKS
FORMULA
a(2n) = a(n).
This should also have a direct formula, mirroring the formula for A236853. Cf. also A236861.
PROG
(Scheme, counting cases empirically with a naive loop. A234742 gives an absolute upper bound for any inverse of A234741):
(define (A236833 n) (let ((u (A234742 n))) (let loop ((k n) (ntimes 0)) (cond ((> k u) ntimes) ((= (A234741 k) n) (loop (+ k 1) (+ ntimes 1))) (else (loop (+ k 1) ntimes))))))
CROSSREFS
A236834 gives the positions of zeros, A236835 the positions of terms larger than one, A236841 the positions of terms other than zero.
Sequence in context: A277873 A032542 A107038 * A328511 A371245 A043278
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 31 2014
STATUS
approved