[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107038
First differences of indices of squarefree Fibonacci numbers.
2
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1
OFFSET
0,5
COMMENTS
First differences of A037918.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..1078 (terms 0..763 from Muniru A Asiru)
MAPLE
with(numtheory): with(combinat): a:=proc(n) if mobius(fibonacci(n))<>0 then n else fi end:A:=[seq(a(n), n=1..180)]:seq(A[j]-A[j-1], j=2..nops(A)); # Emeric Deutsch, May 30 2005
MATHEMATICA
Range[200] // Select[#, SquareFreeQ[Fibonacci[#]]&]& // Differences (* Jean-François Alcover, Aug 29 2024 *)
PROG
(GAP) P1:=List(List(List([1..180], n->Fibonacci(n)), Factors), Collected);;
P2:=Positions(List(List([1..Length(P1)], i->List([1..Length(P1[i])], j->P1[i][j][2])), Set), [1]);; a:=List([1..Length(P2)-1], j->P2[j+1]-P2[j]); # Muniru A Asiru, Jul 06 2018
(PARI) lista(nn) = {my(v = select(x->issquarefree(x), vector(nn, k, fibonacci(k)), 1)); vector(#v-1, k, v[k+1] - v[k]); } \\ Michel Marcus, Jul 09 2018
CROSSREFS
Sequence in context: A055457 A277873 A032542 * A236833 A328511 A371245
KEYWORD
nonn
AUTHOR
Paul Barry, May 09 2005
EXTENSIONS
More terms from Emeric Deutsch, May 30 2005
STATUS
approved