[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236861
Characteristic function of A236841 (A234741): a(n) = 1 if n is a result of downward remultiplication (N -> GF(2)[X]) of some number, 0 otherwise.
8
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1
OFFSET
0
FORMULA
a(0)=1, a(1)=1, a(p)=1 for primes p, and for composite n which are irreducible in GF(2)[X] (terms of A091214), a(n)=0, and for other composite n (terms of A091212), a(n) = 1 only if there exists at least one such pair of k, m < n that n = A048720(k,m) and a(k)*a(m) = 1, and 0 otherwise.
(Please compare also to the formula for A236862).
PROG
(Scheme, two quite inefficient implementations, which require also definec and/or GF2Xdivide from a linked Scheme-source file)
(definec (A236861 n) (if (zero? (A236833 n)) 0 1))
(definec (A236861 n) (cond ((< n 2) 1) ((prime? n) 1) ((= 1 (A091225 n)) 0) (else (let loop ((d 2)) (cond ((= d n) 0) ((and (= d (A091255bi n d)) (not (zero? (* (A236861 d) (A236861 (GF2Xdivide n d)))))) 1) (else (loop (+ d 1))))))))
CROSSREFS
Positions of zeros occur in the same positions as in A236833; sequence A236834 gives these positions.
Sequence in context: A015343 A296077 A322674 * A016300 A016126 A016068
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 13 2014
STATUS
approved