reviewed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
reviewed
approved
proposed
reviewed
editing
proposed
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MolecularTopologicalIndex.html">Molecular Topological Index</a>.
From Amiram Eldar, Apr 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 13/128 - Pi^2/64 + zeta(3)/16.
Sum_{n>=2} (-1)^n/a(n) = log(2)/4 - Pi^2/128 - 17/128 + 3*zeta(3)/64. (End)
(MAGMAMagma) [8*n*(n+1)*(n-1)^3: n in [1..30]]; // G. C. Greubel, Jan 04 2019
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
[8*n*(n+1)*(n-1)^3$n=1..30]; # Muniru A Asiru, Jan 05 2019
proposed
editing
editing
proposed
Molecular topological indices of the square graphs.
G. C. Greubel, <a href="/A192839/b192839.txt">Table of n, a(n) for n = 1..1000</a>
a(n) = 8*(-1+n)^3*(n*(+1+)*(n-1)^3.
G.f.: 48*x^2*(1+x)*(1+9*x)/(1-x)^6. [_- _Colin Barker_, Aug 07 2012]
E.g.f.: 8*x^2*(3 + 13*x + 8*x^2 + x^3)*exp(x). - G. C. Greubel, Jan 04 2019
Table[, {n, 1, 30}] (* G. C. Greubel, Jan 04 2019 *)
(PARI) vector(30, n, 8*n*(n+1)*(n-1)^3) \\ G. C. Greubel, Jan 04 2019
(MAGMA) [8*n*(n+1)*(n-1)^3: n in [1..30]]; // G. C. Greubel, Jan 04 2019
(Sage) [8*n*(n+1)*(n-1)^3 for n in (1..30)] # G. C. Greubel, Jan 04 2019
(GAP) List([1..30], n -> 8*n*(n+1)*(n-1)^3); # G. C. Greubel, Jan 04 2019
approved
editing