[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172394
G.f. satisfies: A(x) = G(x/A(x)) where o.g.f. G(x) = A(x*G(x)) = Sum_{n>=0} A001464(n)*x^n.
1
1, -1, -1, 0, 1, 0, -4, 0, 27, 0, -248, 0, 2830, 0, -38232, 0, 593859, 0, -10401712, 0, 202601898, 0, -4342263000, 0, 101551822350, 0, -2573779506192, 0, 70282204726396, 0, -2057490936366320, 0, 64291032462761955, 0
OFFSET
0,7
COMMENTS
The e.g.f. of A001464 is exp(-x-x^2/2) = Sum_{n>=0} A001464(n)*x^n/n!.
FORMULA
a(2n-2) = (-1)^(n-1)*A000699(n), where A000699(n) is the number of irreducible diagrams with 2n nodes, for n>=1.
a(2n-1) = 0 for n>=2, with a(1) = -1.
EXAMPLE
G.f.: A(x) = 1 - x - x^2 + x^4 - 4*x^6 + 27*x^8 - 248*x^10 +...
where G(x) = A(x*G(x)) is the o.g.f. of A001464:
G(x) = 1 - x + 2*x^3 - 2*x^4 - 6*x^5 + 16*x^6 + 20*x^7 - 132*x^8 +...
while the e.g.f. of A001464 is given by:
exp(-x-x^2/2) = 1 - x + 2*x^3/3! - 2*x^4/4! - 6*x^5/5! + 16*x^6/6! +...
PROG
(PARI) {a(n)=local(G=sum(m=0, n, m!*polcoeff(exp(-x-x^2/2+x*O(x^m)), m)*x^m)+x*O(x^n)); polcoeff(x/serreverse(x*G), n)}
CROSSREFS
Cf. A001464, A000699, A172395 (variant).
Sequence in context: A269214 A269276 A359521 * A172395 A358653 A270281
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 06 2010
STATUS
approved