[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166000
Primes p such that p-5, p-3, p+3, and p+5 are divisible by cubes.
4
12253, 14747, 65173, 83003, 93253, 95747, 109139, 147253, 176747, 213349, 255253, 282253, 284747, 287437, 305267, 311747, 315517, 336253, 338747, 364699, 365747, 444253, 452579, 471253, 525253, 554747, 583789, 633253, 716747, 741253, 743747
OFFSET
1,1
COMMENTS
Subsequence of A089201. - R. J. Mathar, Dec 08 2015
Contains all primes == 12253 (mod 27000), and therefore the sequence is infinite. - Robert Israel, Apr 21 2016
LINKS
MAPLE
filter:= proc(p) local d;
if not isprime(p) then return false fi;
for d in [-5, -3, 3, 5] do
if max(map(t -> t[2], ifactors(p+d)[2])) < 3 then return false fi;
od;
true
end proc:
select(filter, [seq(t, t=7..10^6, 2)]); # Robert Israel, Apr 21 2016
# alternative
isA166000 := proc(n)
if isprime(n) then
isA046099(n-3) and isA046099(n+3) and isA046099(n-5) and isA046099(n+5) ;
else
false;
end if;
end proc: # R. J. Mathar, Aug 14 2024
MATHEMATICA
f[n_]:=Max[Last/@FactorInteger[n]]; q=3; lst={}; Do[p=Prime[n]; If[f[p-5]>=q&&f[p-3]>=q&&f[p+3]>=q&&f[p+5]>=q, AppendTo[lst, p]], {n, 4*8!}]; lst
PROG
(PARI) ncf(n)={vecmax(factor(n)[, 2])>2}; forprime(p=5, 1e7, if(ncf(p+5)&&ncf(p+3)&&ncf(p-3)&&ncf(p-5), print1(p", "))) /* Charles R Greathouse IV, Oct 05 2009 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved