[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086708
Primes p such that p-1 and p+1 are both divisible by cubes (other than 1).
9
271, 487, 593, 751, 809, 919, 1249, 1567, 1783, 1889, 1999, 2647, 2663, 2753, 2969, 3079, 3511, 3617, 3727, 3833, 3943, 4049, 4159, 4481, 4591, 4751, 4801, 5023, 6857, 6967, 7937, 8263, 8369, 9127, 9343, 10289, 10313, 10529, 10639, 11071, 11177
OFFSET
1,1
LINKS
FORMULA
{p in A000040: p+1 in A046099 and p-1 in A046099}. - R. J. Mathar, Dec 08 2015
A089199 INTERSECT A089200. - R. J. Mathar, Dec 08 2015
MAPLE
isA086708 := proc(n)
if isprime(n) then
isA046099(n-1) and isA046099(n+1) ;
else
false;
end if;
end proc:
n := 1:
for c from 1 to 50000 do
if isA086708(c) then
printf("%d %d\n", n, c) ;
n := n+1 ;
end if;
end do: # R. J. Mathar, Dec 08 2015
Res:= NULL: count:= 0:
p:= 1:
while count < 100 do
p:= nextprime(p);
if max(seq(t[2], t=ifactors(p-1)[2]))>=3 and max(seq(t[2], t=ifactors(p+1)[2]))>=3 then
count:= count+1; Res:= Res, p;
fi
od:
Res; # Robert Israel, Jul 11 2018
MATHEMATICA
f[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[p=Prime[n]; If[f[p-1]>=3&&f[p+1]>=3, AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
dbcQ[p_]:=AnyTrue[Surd[#, 3]&/@Rest[Divisors[p-1]], IntegerQ]&&AnyTrue[Surd[#, 3]&/@Rest[ Divisors[ p+1]], IntegerQ]; Select[ Prime[Range[1500]], dbcQ] (* Harvey P. Dale, Sep 21 2024 *)
PROG
(PARI)
\\ Input no. of iterations n, power p and number to subtract and add k.
powerfreep4(n, p, k) = { c=0; pc=0; forprime(x=2, n, pc++; if(!ispowerfree(x-k, p) && !ispowerfree(x+k, p), c++; print1(x", "); ) ); print(); print(c", "pc", "c/pc+.0) }
ispowerfree(m, p1) = { flag=1; y=component(factor(m), 2); for(i=1, length(y), if(y[i] >= p1, flag=0; break); ); return(flag) } \\ Cino Hilliard, Dec 08 2003
CROSSREFS
Cf. A162870 (subsequence).
Sequence in context: A142762 A141029 A090838 * A142637 A288881 A245969
KEYWORD
nonn
AUTHOR
Jason Earls and Amarnath Murthy, Jul 28 2003
EXTENSIONS
Definition clarified by Harvey P. Dale, Sep 21 2024
STATUS
approved