# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a166000 Showing 1-1 of 1 %I A166000 #22 Aug 14 2024 11:38:54 %S A166000 12253,14747,65173,83003,93253,95747,109139,147253,176747,213349, %T A166000 255253,282253,284747,287437,305267,311747,315517,336253,338747, %U A166000 364699,365747,444253,452579,471253,525253,554747,583789,633253,716747,741253,743747 %N A166000 Primes p such that p-5, p-3, p+3, and p+5 are divisible by cubes. %C A166000 Subsequence of A089201. - _R. J. Mathar_, Dec 08 2015 %C A166000 Contains all primes == 12253 (mod 27000), and therefore the sequence is infinite. - _Robert Israel_, Apr 21 2016 %H A166000 G. C. Greubel, Table of n, a(n) for n = 1..16574 %p A166000 filter:= proc(p) local d; %p A166000 if not isprime(p) then return false fi; %p A166000 for d in [-5,-3,3,5] do %p A166000 if max(map(t -> t[2], ifactors(p+d)[2])) < 3 then return false fi; %p A166000 od; %p A166000 true %p A166000 end proc: %p A166000 select(filter, [seq(t,t=7..10^6,2)]); # _Robert Israel_, Apr 21 2016 %p A166000 # alternative %p A166000 isA166000 := proc(n) %p A166000 if isprime(n) then %p A166000 isA046099(n-3) and isA046099(n+3) and isA046099(n-5) and isA046099(n+5) ; %p A166000 else %p A166000 false; %p A166000 end if; %p A166000 end proc: # _R. J. Mathar_, Aug 14 2024 %t A166000 f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-5]>=q&&f[p-3]>=q&&f[p+3]>=q&&f[p+5]>=q,AppendTo[lst,p]],{n,4*8!}];lst %o A166000 (PARI) ncf(n)={vecmax(factor(n)[,2])>2};forprime(p=5,1e7,if(ncf(p+5)&&ncf(p+3)&&ncf(p-3)&&ncf(p-5),print1(p","))) /* _Charles R Greathouse IV_, Oct 05 2009 */ %Y A166000 Cf. A089201, A086708, A086709, A089212, A046099. %K A166000 nonn %O A166000 1,1 %A A166000 _Vladimir Joseph Stephan Orlovsky_, Oct 03 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE