[go: up one dir, main page]

login
A140673
a(n) = 3*n*(n + 5)/2.
13
0, 9, 21, 36, 54, 75, 99, 126, 156, 189, 225, 264, 306, 351, 399, 450, 504, 561, 621, 684, 750, 819, 891, 966, 1044, 1125, 1209, 1296, 1386, 1479, 1575, 1674, 1776, 1881, 1989, 2100, 2214, 2331, 2451, 2574, 2700, 2829, 2961, 3096
OFFSET
0,2
COMMENTS
a(n) equals the number of vertices of the A256666(n)-th graph (see Illustration of initial terms in A256666 Links). - Ivan N. Ianakiev, Apr 20 2015
FORMULA
a(n) = A055998(n)*3 = (3*n^2 + 15*n)/2 = n*(3*n + 15)/2.
a(n) = 3*n + a(n-1) + 6 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(3 - 2*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 18*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 137/450.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/15 - 47/450. (End)
MATHEMATICA
Table[Sum[i + n - 3, {i, 6, n}], {n, 5, 52}] (* Zerinvary Lajos, Jul 11 2009 *)
Table[3 n (n + 5)/2, {n, 0, 50}] (* Bruno Berselli, Sep 05 2018 *)
LinearRecurrence[{3, -3, 1}, {0, 9, 21}, 50] (* Harvey P. Dale, Jul 20 2023 *)
PROG
(PARI) concat(0, Vec(3*x*(3 - 2*x)/(1 - x)^3 + O(x^100))) \\ Michel Marcus, Apr 20 2015
(PARI) a(n) = 3*n*(n+5)/2; \\ Altug Alkan, Sep 05 2018
CROSSREFS
Cf. A055998.
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Sequence in context: A043892 A332019 A146069 * A186294 A059993 A036704
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, May 22 2008
STATUS
approved