[go: up one dir, main page]

login
Search: a140673 -id:a140673
     Sort: relevance | references | number | modified | created      Format: long | short | data
Pentagonal numbers: a(n) = n*(3*n-1)/2.
(Formerly M3818 N1562)
+10
541
0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
OFFSET
0,3
COMMENTS
The average of the first n (n > 0) pentagonal numbers is the n-th triangular number. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
a(n) is the sum of n integers starting from n, i.e., 1, 2 + 3, 3 + 4 + 5, 4 + 5 + 6 + 7, etc. - Jon Perry, Jan 15 2004
Partial sums of 1, 4, 7, 10, 13, 16, ... (1 mod 3), a(2k) = k(6k-1), a(2k-1) = (2k-1)(3k-2). - Jon Perry, Sep 10 2004
Starting with offset 1 = binomial transform of [1, 4, 3, 0, 0, 0, ...]. Also, A004736 * [1, 3, 3, 3, ...]. - Gary W. Adamson, Oct 25 2007
If Y is a 3-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Solutions to the duplication formula 2*a(n) = a(k) are given by the index pairs (n, k) = (5,7), (5577, 7887), (6435661, 9101399), etc. The indices are integer solutions to the pair of equations 2(6n-1)^2 = 1 + y^2, k = (1+y)/6, so these n can be generated from the subset of numbers [1+A001653(i)]/6, any i, where these are integers, confined to the cases where the associated k=[1+A002315(i)]/6 are also integers. - R. J. Mathar, Feb 01 2008
a(n) is a binomial coefficient C(n,4) (A000332) if and only if n is a generalized pentagonal number (A001318). Also see A145920. - Matthew Vandermast, Oct 28 2008
Even octagonal numbers divided by 8. - Omar E. Pol, Aug 18 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
The hyper-Wiener index of the star-tree with n edges (see A196060, example). - Emeric Deutsch, Sep 30 2011
More generally the n-th k-gonal number is equal to n + (k-2)*A000217(n-1), n >= 1, k >= 3. In this case k = 5. - Omar E. Pol, Apr 06 2013
Note that both Euler's pentagonal theorem for the partition numbers and Euler's pentagonal theorem for the sum of divisors refer more exactly to the generalized pentagonal numbers, not this sequence. For more information see A001318, A175003, A238442. - Omar E. Pol, Mar 01 2014
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Schuetz and Whieldon link). a(n)= Cat(n,3), so enumerates the number of (n+1)-gon partitions of a (3*(n-1)+2)-gon. Analogous sequences are A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
Binomial transform of (0, 1, 3, 0, 0, 0, ...) (A169585 with offset 1) and second partial sum of (0, 1, 3, 3, 3, ...). - Gary W. Adamson, Oct 05 2015
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
a(n) is also the number of edges in the Mycielskian of the complete graph K[n]. Indeed, K[n] has n vertices and n(n-1)/2 edges. Then its Mycielskian has n + 3n(n-1)/2 = n(3n-1)/2. See p. 205 of the West reference. - Emeric Deutsch, Nov 04 2016
Sum of the numbers from n to 2n-1. - Wesley Ivan Hurt, Dec 03 2016
Also the number of maximal cliques in the n-Andrásfai graph. - Eric W. Weisstein, Dec 01 2017
Coefficients in the hypergeometric series identity 1 - 5*(x - 1)/(2*x + 1) + 12*(x - 1)*(x - 2)/((2*x + 1)*(2*x + 2)) - 22*(x - 1)*(x - 2)*(x - 3)/((2*x + 1)*(2*x + 2)*(2*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A002412 and A002418. Column 2 of A103450. - Peter Bala, Mar 14 2019
A generalization of the Comment dated Apr 10 2003 follows. (k-3)*A000292(n-2) plus the average of the first n (2k-1)-gonal numbers is the n-th k-gonal number. - Charlie Marion, Nov 01 2020
a(n+1) is the number of Dyck paths of size (3,3n+1); i.e., the number of NE lattice paths from (0,0) to (3,3n+1) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.
LINKS
Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
George E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.
S. Barbero, U. Cerruti and N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7, section 4.4.
Jordan Bell, Euler and the pentagonal number theorem, arXiv:math/0510054 [math.HO], 2005-2006.
Anicius Manlius Severinus Boethius, De institutione arithmetica libri duo, Book 2, sections 13-14.
C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
Stephan Eberhart, Letter to N. J. A. Sloane, Jan 06 1978, also scanned copy of Mathematical-Physical Correspondence, No. 22, Christmas 1977.
Leonhard Euler, Observatio de summis divisorum p. 8.
Leonhard Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004, 2009. See p. 8.
Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
Rodney T. Hansen, Arithmetic of pentagonal numbers, Fib. Quart., 8 (1970), 83-87.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013
Jangwon Ju and Daejun Kim, The pentagonal theorem of sixty-three and generalizations of Cauchy's lemma, arXiv:2010.16123 [math.NT], 2020.
Bir Kafle, Florian Luca and Alain Togbé, Pentagonal and heptagonal repdigits, Annales Mathematicae et Informaticae. pp. 137-145.
Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
R. P. Loh, A. G. Shannon and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Cliff Reiter, Polygonal Numbers and Fifty One Stars, Lafayette College, Easton, PA (2019).
Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
W. Sierpiński, Sur les nombres pentagonaux, Bull. Soc. Royale Sciences Liège, 33 (No. 9-10, 1964), 513-517. [Annotated scanned copy]
Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
Eric Weisstein's World of Mathematics, Andrásfai Graph.
Eric Weisstein's World of Mathematics, Maximal Clique.
Eric Weisstein's World of Mathematics, Pentagonal Number.
Wikipedia, Mycielskian.
FORMULA
Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(n) = A000290(n) + A000217(n-1). - Lekraj Beedassy, Jun 07 2004
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = A049452(n) - A022266(n) = A033991(n) - A005476(n). - Zerinvary Lajos, Jun 12 2007
Equals A034856(n) + (n - 1)^2. Also equals A051340 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A000217(n) + 2*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = A142150(n) + A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = n*A000217(n) - (n-1)*A000217(n-1). - Bruno Berselli, Jan 18 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+3) - A016777(n)*3 = a(n+3) - A017197(n),
a(n) = a(n+4) - A016969(n)*2 = a(n+4) - A017641(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
a(n) = A000217(2n-1) - A000217(n-1), for n > 0. - Ivan N. Ianakiev, Apr 17 2013
a(n) = A002411(n) - A002411(n-1). - J. M. Bergot, Jun 12 2013
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
a(n) = A007584(n) - A245301(n-1), for n > 0. - Manfred Arens, Jan 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = A023855(2*n-1) - A023855(2*n-2). - Luc Rousseau, Feb 24 2018
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2)*binomial(3*n+k-1, 2*k). - Peter Bala, Nov 04 2024
EXAMPLE
Illustration of initial terms:
.
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o
. o o o o o o o o o o o o o
. o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o
.
. 1 5 12 22 35
- Philippe Deléham, Mar 30 2013
MAPLE
A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
MATHEMATICA
Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
PROG
(PARI) a(n)=n*(3*n-1)/2
(PARI) vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
(PARI) is_a000326 = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5) \\ Hugo Pfoertner, Aug 03 2023
(Haskell)
a000326 n = n * (3 * n - 1) `div` 2 -- Reinhard Zumkeller, Jul 07 2012
(Magma) [n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
(GAP) List([0..50], n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
(Python) # Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 3, y + 3
A000326 = aList()
print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019
CROSSREFS
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.
KEYWORD
core,nonn,easy,nice,changed
EXTENSIONS
Incorrect example removed by Joerg Arndt, Mar 11 2010
STATUS
approved
Triangular matchstick numbers: a(n) = 3*n*(n+1)/2.
+10
128
0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198, 234, 273, 315, 360, 408, 459, 513, 570, 630, 693, 759, 828, 900, 975, 1053, 1134, 1218, 1305, 1395, 1488, 1584, 1683, 1785, 1890, 1998, 2109, 2223, 2340, 2460, 2583, 2709, 2838, 2970, 3105, 3243, 3384, 3528
OFFSET
0,2
COMMENTS
Also, 3 times triangular numbers, a(n) = 3*A000217(n).
In the 24-bit RGB color cube, the number of color-lattice-points in r+g+b = n planes at n < 256 equals the triangular numbers. For n = 256, ..., 765 the number of legitimate color partitions is less than A000217(n) because {r,g,b} components cannot exceed 255. For n = 256, ..., 511, the number of non-color partitions are computable with A045943(n-255), while for n = 512, ..., 765, the number of color points in r+g+b planes equals A000217(765-n). - Labos Elemer, Jun 20 2005
If a 3-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
a(n) is also the smallest number that may be written both as the sum of n-1 consecutive positive integers and n consecutive positive integers. - Claudio Meller, Oct 08 2010
For n >= 3, a(n) equals 4^(2+n)*Pi^(1 - n) times the coefficient of zeta(3) in the following integral with upper bound Pi/4 and lower bound 0: int x^(n+1) tan x dx. - John M. Campbell, Jul 17 2011
The difference a(n)-a(n-1) = 3*n, for n >= 1. - Stephen Balaban, Jul 25 2011 [Comment clarified by N. J. A. Sloane, Aug 01 2024]]
Sequence found by reading the line from 0, in the direction 0, 3, ..., and the same line from 0, in the direction 0, 9, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. This is one of the orthogonal axes of the spiral; the other is A032528. - Omar E. Pol, Sep 08 2011
A005449(a(n)) = A000332(3n + 3) = C(3n + 3, 4), a second pentagonal number of triangular matchstick number index number. Additionally, a(n) - 2n is a pentagonal number (A000326). - Raphie Frank, Dec 31 2012
Sum of the numbers from n to 2n. - Wesley Ivan Hurt, Nov 24 2015
Number of orbits of Aut(Z^7) as function of the infinity norm (n+1) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 5376 or 17920 or 20160. - Philippe A.J.G. Chevalier, Dec 28 2015
Also the number of 4-cycles in the (n+4)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Number of terms less than 10^k, k=0,1,2,3,...: 1, 3, 8, 26, 82, 258, 816, 2582, 8165, 25820, 81650, 258199, 816497, 2581989, 8164966, ... - Muniru A Asiru, Jan 24 2018
Numbers of the form 3*m*(2*m + 1) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Partial sums of A008585. - Omar E. Pol, Jun 20 2018
Column 1 of A273464. (Number of ways to select a unit lozenge inside an isosceles triangle of side length n; all vertices on a hexagonal lattice.) - R. J. Mathar, Jul 10 2019
Total number of pips in the n-th suit of a double-n domino set. - Ivan N. Ianakiev, Aug 23 2020
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 543.
LINKS
Abderrahim Arabi, Hacène Belbachir, and Jean-Philippe Dubernard, Enumeration of parallelogram polycubes, arXiv:2105.00971 [cs.DM], 2021.
Francesco Brenti and Paolo Sentinelli, Wachs permutations, Bruhat order and weak order, arXiv:2212.04932 [math.CO], 2022.
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 29.
T. Aaron Gulliver, Sums of Powers of Integers Divisible by Three, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 38, 1895 - 1901.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
E. Lábos, On the number of RGB-colors we can distinguish. Partition Spectra. Lecture at 7th Hungarian Conference on Biometry and Biomathematics. Budapest. Jul 06, 2005. Applied Ecology and Environmental Research 4(2): 159-169, 2006.
R. J. Mathar, Lozenge tilings of the equilateral triangle, arXiv:1909.06336 [math.CO], 2019.
Eric Weisstein's World of Mathematics, Graph Cycle.
FORMULA
a(n) is the sum of n+1 integers starting from n, i.e., 1+2, 2+3+4, 3+4+5+6, 4+5+6+7+8, etc. - Jon Perry, Jan 15 2004
a(n) = A126890(n+1,n-1) for n>1. - Reinhard Zumkeller, Dec 30 2006
a(n) + A145919(3*n+3) = 0. - Matthew Vandermast, Oct 28 2008
a(n) = A000217(2*n) - A000217(n-1); A179213(n) <= a(n). - Reinhard Zumkeller, Jul 05 2010
a(n) = a(n-1)+3*n, n>0. - Vincenzo Librandi, Nov 18 2010
G.f.: 3*x/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = A005448(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A001477(n)+A000290(n)+A000217(n). - J. M. Bergot, Dec 08 2012
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2. - Wesley Ivan Hurt, Nov 24 2015
a(n) = A027480(n)-A027480(n-1). - Peter M. Chema, Jan 18 2017.
2*a(n)+1 = A003215(n). - Miquel Cerda, Jan 22 2018
a(n) = T(2*n) - T(n-1), where T(n) = A000217(n). In general, T(k)*T(n) = Sum_{i=0..k-1} (-1)^i*T((k-i)*(n-i)). - Charlie Marion, Dec 06 2020
E.g.f.: 3*exp(x)*x*(2 + x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/3. (End)
Product_{n>=1} (1 - 1/a(n)) = -(3/(2*Pi))*cos(sqrt(11/3)*Pi/2). - Amiram Eldar, Feb 21 2023
EXAMPLE
From Stephen Balaban, Jul 25 2011: (Start)
T(n), the triangular numbers = number of nodes,
a(n-1) = number of edges in the T(n) graph:
o (T(1) = 1, a(0) = 0)
o
/ \ (T(2) = 3, a(1) = 3)
o - o
o
/ \
o - o (T(3) = 6, a(2) = 9)
/ \ / \
o - o - o
... [Corrected by N. J. A. Sloane, Aug 01 2024] (End)
MAPLE
seq(3*binomial(n+1, 2), n=0..49); # Zerinvary Lajos, Nov 24 2006
MATHEMATICA
Table[3 n (n + 1)/2, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Oct 31 2008 *)
3 Accumulate@Range[0, 48] (* Arkadiusz Wesolowski, Oct 29 2012 *)
CoefficientList[Series[-3 x/(x - 1)^3, {x, 0, 47}], x] (* Robert G. Wilson v, Jan 29 2015 *)
LinearRecurrence[{3, -3, 1}, {0, 3, 9}, 50] (* Jean-François Alcover, Dec 12 2016 *)
PROG
(Common Lisp) (defun tri (i) (if (eq i 0) 0 (+ (* 3 (- i 1)) (tri (- i 1))))) // Stephen Balaban, Jul 25 2011
(Magma) [3*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, May 02 2011
(PARI) a(n)=3*binomial(n+1, 2) \\ Charles R Greathouse IV, Jun 16 2011
(Haskell) a n = sum [x | x <- [n..2*n]] -- Peter Kagey, Jul 27 2015
(GAP) List([0..10^4], n -> 3*n*(n+1)/2); # Muniru A Asiru, Jan 24 2018
(Scala) (3 to 150 by 3).scanLeft(0)(_ + _) // Alonso del Arte, Sep 12 2019
CROSSREFS
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
A diagonal of A010027.
Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A115067, A008585, A005843, A001477, A000217.
Cf. A027480 (partial sums).
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
This sequence: Sum_{k = n..2*n} k.
Cf. A304993: Sum_{k = n..2*n} k*(k+1)/2.
Cf. A050409: Sum_{k = n..2*n} k^2.
Similar sequences are listed in A316466.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(n) = (3*n^2 - n - 2)/2.
+10
38
0, 4, 11, 21, 34, 50, 69, 91, 116, 144, 175, 209, 246, 286, 329, 375, 424, 476, 531, 589, 650, 714, 781, 851, 924, 1000, 1079, 1161, 1246, 1334, 1425, 1519, 1616, 1716, 1819, 1925, 2034, 2146, 2261, 2379, 2500, 2624, 2751, 2881, 3014, 3150, 3289, 3431, 3576
OFFSET
1,2
COMMENTS
Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 6720. - Philippe A.J.G. Chevalier, Dec 28 2015
a(n) is the sum of the numerator and denominator of the reduced fraction resulting from the sum A000217(n-2)/A000217(n-1) + A000217(n-1)/A000217(n), n>1. - J. M. Bergot, Jun 10 2017
For n > 1, a(n) is also the number of (not necessarily maximal) cliques in the (n-1)-Andrásfai graph. - Eric W. Weisstein, Nov 29 2017
a(n+1) is the sum of the lengths of all the segments used to draw a square of side n representing the most classic pattern for walls made of 2 X 1 bricks, known as a 1-over-2 pattern, where each joint between neighboring bricks falls over the center of the brick below. - Stefano Spezia, Jun 05 2021
LINKS
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
Eric Weisstein's World of Mathematics, Andrásfai Graph.
Eric Weisstein's World of Mathematics, Clique.
FORMULA
a(n) = (3*n+2)*(n-1)/2.
a(n+1) = n*(3*n + 5)/2. - Omar E. Pol, May 21 2008
a(n) = 3*n + a(n-1) - 2 for n>1, a(1)=0. - Vincenzo Librandi, Nov 13 2010
a(n) = A095794(-n). - Bruno Berselli, Sep 02 2011
G.f.: x^2*(4-x) / (1-x)^3. - R. J. Mathar, Sep 02 2011
a(n) = A055998(2*n-2) - A055998(n-1). - Bruno Berselli, Sep 23 2016
E.g.f.: exp(x)*x*(8 + 3*x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=2} 1/a(n) = Pi/(5*sqrt(3)) - 3*log(3)/5 + 21/25.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2)/5 - 2*Pi/(5*sqrt(3)) + 9/25. (End)
a(n) = Sum_{j=0..n-2} (2*n-j) = Sum_{j=0..n-2} (n+2+j), for n>=1. See the trapezoid link. - Leo Tavares, May 20 2022
EXAMPLE
Illustrations for n = 2..7 from Stefano Spezia, Jun 05 2021:
_ _ _ _ _ _
|_| |_|_| |_|_ _|
|_ _| |_ _|_|
|_|_ _|
a(2) = 4 a(3) = 11 a(4) = 21
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_|
|_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_|
|_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_ _|_|
a(5) = 34 a(6) = 50 a(7) = 69
MATHEMATICA
Table[n (3 n - 1)/2 - 1, {n, 50}] (* Vincenzo Librandi, Jun 11 2017 *)
LinearRecurrence[{3, -3, 1}, {0, 4, 11}, 20] (* Eric W. Weisstein, Nov 29 2017 *)
CoefficientList[Series[(-4 + x) x/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
PROG
(PARI) a(n)=n*(3*n-1)/2-1 \\ Charles R Greathouse IV, Jan 27 2012
(Magma) [n*(3*n-1)/2-1: n in [1..50]]; // Vincenzo Librandi, Jun 11 2017
CROSSREFS
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A008585, A005843, A001477, A000217.
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 01 2006
EXTENSIONS
Edited by N. J. A. Sloane, Mar 05 2006
STATUS
approved
a(n) = n*(3*n + 7)/2.
+10
35
0, 5, 13, 24, 38, 55, 75, 98, 124, 153, 185, 220, 258, 299, 343, 390, 440, 493, 549, 608, 670, 735, 803, 874, 948, 1025, 1105, 1188, 1274, 1363, 1455, 1550, 1648, 1749, 1853, 1960, 2070, 2183, 2299, 2418, 2540, 2665, 2793, 2924
OFFSET
0,2
COMMENTS
This sequence is mentioned in the Guo-Niu Han's paper, chapter 6: Dictionary of the standard puzzle sequences, p. 19 (see link). - Omar E. Pol, Oct 28 2011
Number of cards needed to build an n-tier house of cards with a flat, one-card-wide roof. - Tyler Busby, Dec 28 2022
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
FORMULA
G.f.: x*(5 - 2*x)/(1 - x)^3. - Bruno Berselli, Feb 11 2011
a(n) = (3*n^2 + 7*n)/2.
a(n) = a(n-1) + 3*n + 2 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
E.g.f.: (1/2)*(3*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 117/98 - Pi/(7*sqrt(3)) - 3*log(3)/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(7*sqrt(3)) + 4*log(2)/7 - 75/98. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {0, 5, 13}, 50] (* Harvey P. Dale, Jan 17 2022 *)
PROG
(PARI) a(n)=n*(3*n+7)/2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, this sequence, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. numbers of the form n*(d*n + 10 - d)/2: A008587, A056000, A028347, A014106, A028895, A045944, A186029, A007742, A022267, A033429, A022268, A049452, A186030, A135703, A152734, A139273.
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, May 22 2008
STATUS
approved
a(n) = 3*n*(n + 3)/2.
+10
27
0, 6, 15, 27, 42, 60, 81, 105, 132, 162, 195, 231, 270, 312, 357, 405, 456, 510, 567, 627, 690, 756, 825, 897, 972, 1050, 1131, 1215, 1302, 1392, 1485, 1581, 1680, 1782, 1887, 1995, 2106, 2220, 2337, 2457, 2580, 2706, 2835, 2967
OFFSET
0,2
COMMENTS
a(n) is also the dimension of the irreducible representation of the Lie algebra sl(3) with the highest weight 2*L_1+n*(L_1+L_2). - Leonid Bedratyuk, Jan 04 2010
Number of edges in the hexagonal triangle, T(n) (see the He et al. reference). - Emeric Deutsch, Nov 14 2014
a(n) = twice the area of a triangle having vertices at binomials (C(n,3),C(n+3,3)), (C(n+1,3),C(n+4,3)), and (C(n+2,3),C(n+5,3)) with n>=2. - J. M. Bergot, Mar 01 2018
REFERENCES
W. Fulton, J. Harris, Representation theory: a first course. (1991). page 224, Exercise 15.19. - Leonid Bedratyuk, Jan 04 2010
LINKS
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
Q. H. He, J. Z. Gu, S. J. Xu, and W. H. Chan, Hosoya polynomials of hexagonal triangles and trapeziums, MATCH, Commun. Math. Comput. Chem., Vol. 72, No. 3 (2014), pp. 835-843. - Emeric Deutsch, Nov 14 2014
FORMULA
a(n) = A000096(n)*3 = (3*n^2 + 9*n)/2 = n*(3*n+9)/2.
a(n) = a(n-1) + 3*n + 3 with n>0, a(0)=0. - Vincenzo Librandi, Nov 24 2010
G.f.: 3*x*(2 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Aug 15 2015
E.g.f.: (1/2)*(3*x^2 + 12*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 11/27.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 5/27. (End)
MAPLE
A140091:=n->3*n*(n+3)/2: seq(A140091(n), n=0..50); # Wesley Ivan Hurt, Nov 14 2014
MATHEMATICA
Table[3 n (n + 3)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 6, 15}, 50] (* Harvey P. Dale, Aug 15 2015 *)
PROG
(Magma) [3*n*(n+3)/2 : n in [0..50]]; // Wesley Ivan Hurt, Nov 14 2014
(PARI) a(n)=3*n*(n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, this sequence, A059845, A140672, A140673, A140674, A140675, A151542.
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, May 22 2008
STATUS
approved
a(n) = n*(3*n + 11)/2.
+10
19
0, 7, 17, 30, 46, 65, 87, 112, 140, 171, 205, 242, 282, 325, 371, 420, 472, 527, 585, 646, 710, 777, 847, 920, 996, 1075, 1157, 1242, 1330, 1421, 1515, 1612, 1712, 1815, 1921, 2030, 2142, 2257, 2375, 2496, 2620, 2747, 2877, 3010, 3146, 3285, 3427, 3572, 3720
OFFSET
0,2
COMMENTS
Maximum dimension of Euclidean spaces which suffice for every smooth compact Riemannian n-manifold to be realizable as a sub-manifold. - comment edited by Gene Ward Smith, Jan 15 2017
LINKS
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
John Nash, The Imbedding Problem For Riemannian Manifolds, Annals of Mathematics, Vol. 63, No. 1, 1956, pp. 20-63.
FORMULA
a(n) = 3*n + a(n-1) + 4 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
G.f.: x*(7 - 4*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 14*x)*exp(x). - G. C. Greubel, Jul 17 2017
MAPLE
A059845:=n->n*(3*n + 11)/2: seq(A059845(n), n=0..100); # Wesley Ivan Hurt, Jan 15 2017
MATHEMATICA
Table[n (3n+11)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 7, 17}, 50] (* Harvey P. Dale, Mar 19 2017 *)
PROG
(PARI) for (n=0, 2000, write("b059845.txt", n, " ", n*(3*n + 11)/2); ) \\ Harry J. Smith, Jun 29 2009
CROSSREFS
The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672, A140673, A140674, A140675, A151542.
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Mar 10 2001
STATUS
approved
a(n) = n*(3*n + 13)/2.
+10
16
0, 8, 19, 33, 50, 70, 93, 119, 148, 180, 215, 253, 294, 338, 385, 435, 488, 544, 603, 665, 730, 798, 869, 943, 1020, 1100, 1183, 1269, 1358, 1450, 1545, 1643, 1744, 1848, 1955, 2065, 2178, 2294, 2413, 2535, 2660, 2788, 2919, 3053
OFFSET
0,2
LINKS
FORMULA
a(n) = (3*n^2 + 13*n)/2.
a(n) = 3*n + a(n-1) + 5 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=8, a(2)=19; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 16 2011
G.f.: x*(8 - 5*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 +16*x)*exp(x). - G. C. Greubel, Jul 17 2017
MATHEMATICA
Table[n (3 n + 13)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 8, 19}, 50] (* Harvey P. Dale, Dec 16 2011 *)
PROG
(PARI) a(n)=n*(3*n+13)/2 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [(3*n^2 + 13*n)/2 : n in [0..80]]; // Wesley Ivan Hurt, Dec 27 2023
CROSSREFS
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, May 22 2008
STATUS
approved
Triangular array read by rows: T(m,n) = n + n+1 + ... + m = (m+n)(m-n+1)/2.
+10
15
1, 3, 2, 6, 5, 3, 10, 9, 7, 4, 15, 14, 12, 9, 5, 21, 20, 18, 15, 11, 6, 28, 27, 25, 22, 18, 13, 7, 36, 35, 33, 30, 26, 21, 15, 8, 45, 44, 42, 39, 35, 30, 24, 17, 9, 55, 54, 52, 49, 45, 40, 34, 27, 19, 10, 66, 65, 63, 60, 56, 51, 45, 38, 30, 21, 11, 78, 77, 75, 72, 68, 63, 57, 50
OFFSET
1,2
COMMENTS
Triangle read by rows, T(n,k) = A000217(n) - A000217(k), 0 <= k < n. - Philippe Deléham, Mar 07 2013
Subtriangle of triangle in A049780. - Philippe Deléham, Mar 07 2013
No primes and all composite numbers (except 2^x) are generated after the first two columns of the square array for this sequence. In other words, no primes and all composites except 2^x are generated when m-n >= 2. - Bob Selcoe, Jun 18 2013
Diagonal sums in the square array equal partial sums of squares (A000330). - Bob Selcoe, Feb 14 2014
From Bob Selcoe, Oct 27 2014: (Start)
The following apply to the triangle as a square array read by rows unless otherwise specified (see Table link);
Conjecture: There is at least one prime in interval [T(n,k), T(n,k+1)]. Since T(n,k+1)/T(n,k) decreases to (k+1)/k as n increases, this is true for k=1 ("Bertrand's Postulate", first proved by P. Chebyshev), k=2 (proved by El Bachraoui) and k=3 (proved by Loo).
Starting with T(1,1), The falling diagonal of the first 2 numbers in each column (read by column) are the generalized pentagonal numbers (A001318). That is, the coefficients of T(1,1), T(2,1), T(2,2), T(3,2), T(3,3), T(4,3), T(4,4) etc. are the generalized pentagonal numbers. These are A000326 and A005449 (Pentagonal and Second pentagonal numbers: n*(3*n+1)/2, respectively), interweaved.
Let D(n,k) denote falling diagonals starting with T(n,k):
Treating n as constant: pentagonal numbers of the form n*k + 3*k*(k-1)/2 are D(n,1); sequences A000326, 005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542 are formed by n = 1 through 12, respectively.
Treating k as constant: D(1,k) are (3*n^2 + (4k-5)*n + (k-1)*(k-2))/2. When k = 2(mod3), D(1,k), is same as D(k+1,1) omitting the first (k-2)/3 numbers in the sequences. So D(1,2) is same as D(3,1); D(1,5) is same as D(6,1) omitting the 6; D(1,8) is same as D(9,1) omitting the 9 and 21; etc.
D(1,3) and D(1,4) are sequences A095794 and A140229, respectively.
(End)
LINKS
M. El Bachraoui, Primes in the interval [2n,3n], Int. J. Contemp. Math. Sciences 1:13 (2006), pp. 617-621.
A. Loo, On the primes in the interval [3n,4n], Int. J. Contemp. Math. Sciences 6 (2011), no. 38, 1871-1882.
S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv, arXiv:1212.2785 [math.NT], 2012.
FORMULA
Partial sums of A002260 row terms, starting from the right; e.g., row 3 of A002260 = (1, 2, 3), giving (6, 5, 3). - Gary W. Adamson, Oct 23 2007
Sum_{k=0..n-1} (-1)^k*(2*k+1)*A000203(T(n,k)) = (-1)^(n-1)*A000330(n). - Philippe Deléham, Mar 07 2013
Read as a square array: T(n,k) = k*(k+2n-1)/2. - Bob Selcoe, Oct 27 2014
EXAMPLE
Rows: {1}; {3,2}; {6,5,3}; ...
Triangle begins:
1;
3, 2;
6, 5, 3;
10, 9, 7, 4;
15, 14, 12, 9, 5;
21, 20, 18, 15, 11, 6;
28, 27, 25, 22, 18, 13, 7;
36, 35, 33, 30, 26, 21, 15, 8;
45, 44, 42, 39, 35, 30, 24, 17, 9;
55, 54, 52, 49, 45, 40, 34, 27, 19, 10; ...
MATHEMATICA
Flatten[Table[(n+k) (n-k+1)/2, {n, 15}, {k, n}]] (* Harvey P. Dale, Feb 27 2012 *)
PROG
(PARI) {T(n, k) = if( k<1 || n<k, 0, (n + k) * (n - k + 1) / 2 )} /* Michael Somos, Oct 06 2007 */
(Magma) /* As triangle */ [[(m+n)*(m-n+1) div 2: n in [1..m]]: m in [1.. 15]]; // Vincenzo Librandi, Oct 27 2014
CROSSREFS
Row sums = A000330.
Cf. A001318 (generalized pentagonal numbers).
Cf. A000326, 005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542 (pentagonal numbers of form n*k + 3*k*(k-1)/2).
KEYWORD
nonn,tabl
STATUS
approved
a(n) = n*(3*n + 19)/2.
+10
15
0, 11, 25, 42, 62, 85, 111, 140, 172, 207, 245, 286, 330, 377, 427, 480, 536, 595, 657, 722, 790, 861, 935, 1012, 1092, 1175, 1261, 1350, 1442, 1537, 1635, 1736, 1840, 1947, 2057, 2170, 2286, 2405, 2527, 2652, 2780, 2911, 3045, 3182
OFFSET
0,2
FORMULA
a(n) = (3*n^2 + 19*n)/2.
a(n) = 3*n + a(n-1) + 8 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(11 - 8*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 22*x)*exp(x). - G. C. Greubel, Jul 17 2017
MATHEMATICA
Table[(n(3n+19))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 11, 25}, 50] (* Harvey P. Dale, Apr 26 2018 *)
PROG
(PARI) a(n)=n*(3*n+19)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, May 22 2008
STATUS
approved
Generalized pentagonal numbers: a(n) = 12*n + 3*n*(n-1)/2.
+10
14
0, 12, 27, 45, 66, 90, 117, 147, 180, 216, 255, 297, 342, 390, 441, 495, 552, 612, 675, 741, 810, 882, 957, 1035, 1116, 1200, 1287, 1377, 1470, 1566, 1665, 1767, 1872, 1980, 2091, 2205, 2322, 2442, 2565, 2691, 2820, 2952, 3087, 3225, 3366, 3510, 3657, 3807, 3960
OFFSET
0,2
FORMULA
a(n) = a(n-1) + 3*n + 9 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(4 - 3*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
From G. C. Greubel, May 26 2017: (Start)
a(n) = 3*n*(n+7)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*(8*x + x^2)*exp(x). (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 121/490.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/21 - 319/4410. (End)
a(n) = A003154(n+1) - A060544(n). - Leo Tavares, Mar 26 2022
MATHEMATICA
s=0; lst={}; Do[AppendTo[lst, s+=n], {n, 12, 6!, 3}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 05 2010 *)
LinearRecurrence[{3, -3, 1}, {0, 12, 27}, 50] (* or *) With[{nn = 50}, CoefficientList[Series[(3/2)*(8*x + x^2)*Exp[x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 26 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(serlaplace((3/2)*(8*x + x^2)*exp(x)))) \\ G. C. Greubel, May 26 2017
(PARI) a(n)=(3*n^2+21*n)/2 \\ Charles R Greathouse IV, Jun 16 2017
CROSSREFS
The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
KEYWORD
easy,nonn
AUTHOR
N. J. A. Sloane, May 15 2009
STATUS
approved

Search completed in 0.020 seconds