[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078761
Sum of the digits of all n-digit numbers.
0
45, 855, 12600, 166500, 2070000, 24750000, 288000000, 3285000000, 36900000000, 409500000000, 4500000000000, 49050000000000, 531000000000000, 5715000000000000, 61200000000000000, 652500000000000000, 6930000000000000000, 73350000000000000000
OFFSET
1,1
FORMULA
First differences of A034967: a(n) = 45*n*10^(n-1) - 45*(n-1)10^(n-2) = 45*(9*n+1)*10^(n-2) - Alexander Adamchuk, Jan 02 2004
G.f.: 45*x*(1 - x)/(1 - 10*x)^2. - Arkadiusz Wesolowski, Jul 12 2012
EXAMPLE
The sum of the digits of the two-digit numbers 10, 11, 12, ..., 99 is 855. Therefore a(2) = 855.
MATHEMATICA
f[n_] := Module[{i, s}, s = 0; For[i = 10^(n - 1), i < 10^n, i++, s = s + Apply[Plus, IntegerDigits[i]]]; s]; t = Table[f[n], {n, 1, 6}]
n=Range[15] a=45*(9*n+1)*10^(n-2) (Adamchuk)
Rest[CoefficientList[Series[45x (1-x)/(1-10x)^2, {x, 0, 20}], x]] (* Harvey P. Dale, Aug 26 2019 *)
CROSSREFS
Cf. A034967.
Sequence in context: A134290 A359933 A341573 * A034967 A199352 A195466
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Jan 08 2003
STATUS
approved