[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293971
Number of sets of exactly nine nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
2
45, 740, 7265, 54844, 355786, 2086218, 11402599, 59244154, 296592681, 1444795518, 6898985716, 32478508414, 151439118998, 702039301562, 3246061184641, 15011635714770, 69604533115983, 324297338323040, 1521325113273431, 7199243859471728, 34426802099939524
OFFSET
25,1
LINKS
FORMULA
a(n) = [x^n y^9] Product_{j>=1} (1+y*x^j)^A000085(j).
MAPLE
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i))), x, 10)
end:
a:= n-> coeff(b(n$2), x, 9):
seq(a(n), n=25..49);
CROSSREFS
Column k=9 of A293815.
Cf. A000085.
Sequence in context: A105251 A099632 A264138 * A341427 A024379 A134290
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2017
STATUS
approved