[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Ninth column (and diagonal) of Narayana triangle A001263.
7

%I #42 Sep 08 2022 08:45:32

%S 1,45,825,9075,70785,429429,2147145,9202050,34763300,118195220,

%T 367479684,1057896060,2848181700,7229999700,17420856420,40067969766,

%U 88385227425,187746398125,385374185625,766691800875,1482270815025,2791289197125,5130235085625,9219552907500

%N Ninth column (and diagonal) of Narayana triangle A001263.

%C See a comment under A134288 on the coincidence of column and diagonal sequences.

%C Kekulé numbers K(O(1,8,n)) for certain benzenoids (see the Cyvin-Gutman reference, p. 105, eq. (i)).

%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.

%H T. D. Noe, <a href="/A134290/b134290.txt">Table of n, a(n) for n = 0..1000</a>

%H W. F. Wheatley and James Ethridge (Proposers), Comment from Alan H. Rapoport, <a href="https://projecteuclid.org/euclid.mjms/1575342085">Problem 84</a>, Missouri Journal of Mathematical Sciences, volume 8, #2, spring 1996, pages 97-102.

%F a(n) = A001263(n+9,9) = binomial(n+9,9)*binomial(n+9,8)/(n+9).

%F O.g.f.: P(8,x)/(1-x)^17 with the numerator polynomial P(8,x) = Sum_{k=1..8} A001263(8,k)*x^(k-1), the eighth row polynomial of the Narayana triangle: P(8,x) = 1 + 28*x + 196*x^2 + 490*x^3 + 490*x^4 + 196*x^5 + 28*x^6 + x^7.

%F a(n) = Product_{i=1..8} A002378(n+i)/A002378(i). - _Bruno Berselli_, Sep 01 2016

%F From _Amiram Eldar_, Oct 19 2020: (Start)

%F Sum_{n>=0} 1/a(n) = 497925669/175 - 288288*Pi^2.

%F Sum_{n>=0} (-1)^n/a(n) = 580367/35 - 1680*Pi^2. (End)

%p a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8))^2*(n+9))/14631321600:

%p seq(a(n), n=0..23); # _Peter Luschny_, Sep 01 2016

%t Table[Binomial[n+9,9]*Binomial[n+8,7]/8, {n,0,25}] (* _G. C. Greubel_, Aug 28 2019 *)

%o (PARI) Vec((1+28*x+196*x^2+490*x^3+490*x^4+196*x^5+28*x^6+x^7)/(1-x)^17 + O(x^25)) \\ _Altug Alkan_, Sep 01 2016

%o (PARI) vector(25, n, binomial(n+8,9)*binomial(n+7,7)/8) \\ _G. C. Greubel_, Aug 28 2019

%o (Magma) [Binomial(n+9,9)*Binomial(n+8,7)/8: n in [0..25]]; // _G. C. Greubel_, Aug 28 2019

%o (Sage) [binomial(n+9,9)*binomial(n+8,7)/8 for n in (0..25)] # _G. C. Greubel_, Aug 28 2019

%o (GAP) List([0..25], n-> Binomial(n+9,9)*Binomial(n+8,7)/8); # _G. C. Greubel_, Aug 28 2019

%Y Cf. A002378.

%Y Cf. A134289 (eighth column of Narayana triangle).

%Y Cf. A134291 (tenth column of Narayana triangle).

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Nov 13 2007