[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129626
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+281)^2 = y^2.
4
0, 76, 559, 843, 1239, 3976, 5620, 7920, 23859, 33439, 46843, 139740, 195576, 273700, 815143, 1140579, 1595919, 4751680, 6648460, 9302376, 27695499, 38750743, 54218899, 161421876, 225856560, 316011580, 940836319, 1316389179, 1841851143, 5483596600
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+281, y).
Corresponding values y of solutions (x, y) are in A157348.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (297+68*sqrt(2))/281 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (130803+73738*sqrt(2))/281^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3)-a(n-6)+562 for n > 6; a(1)=0, a(2)=76, a(3)=559, a(4)=843, a(5)=1239, a(6)=3976.
G.f.: x*(76+483*x+284*x^2-60*x^3-161*x^4-60*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 281*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 76, 559, 843, 1239, 3976, 5620}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
PROG
(PARI) {forstep(n=0, 1000000000, [3, 1], if(issquare(2*n^2+562*n+78961), print1(n, ", ")))}
CROSSREFS
Cf. A157348, A001652, A129288, A129289, A129298, A156035 (decimal expansion of 3+2*sqrt(2)), A157349 (decimal expansion of (297+68*sqrt(2))/281), A157350 (decimal expansion of (130803+73738*sqrt(2))/281^2).
Sequence in context: A363843 A262790 A184680 * A200167 A178262 A253411
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 30 2007
EXTENSIONS
Edited by Klaus Brockhaus, Apr 12 2009
STATUS
approved