[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129623
Numbers which are the product of a non-palindrome and its reversal, where leading zeros are not allowed.
2
252, 403, 574, 736, 765, 976, 1008, 1207, 1300, 1458, 1462, 1612, 1729, 1855, 1944, 2268, 2296, 2430, 2668, 2701, 2944, 3154, 3478, 3627, 3640, 4032, 4275, 4606, 4930, 5092, 5605, 5848, 6624, 6786, 7663, 8722, 20502, 23632, 26962, 30492, 31003, 34222
OFFSET
1,1
COMMENTS
The smallest square in this sequence is 63504 = 252*252 = 144*441.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..11195 (terms < 10^9)
EXAMPLE
252 = 12*21.
MATHEMATICA
Take[Union[ Transpose[ Select[Table[{n, n* FromDigits[Reverse[IntegerDigits[n]]]}, {n, 1000}], Mod[ #[[1]], 10] != 0 && #[[1]] != FromDigits[Reverse[IntegerDigits[ #[[1]]]]] &]][[2]]], 100]
upto2ndigits@n_ := Union@(If[(i = IntegerReverse@#) > #, i*#, Nothing] & /@Range@(10^n - 1)); upto2ndigits@3 (* Hans Rudolf Widmer, Sep 06 2024 *)
PROG
(Python)
from sympy import divisors
def ok(n): return any(n==d*int(s[::-1]) for d in divisors(n)[1:-1] if (s:=str(d))!=s[::-1] and s[-1]!="0")
print([k for k in range(36000) if ok(k)]) # Michael S. Branicky, Sep 07 2024
(Python) # instantly generates 44185 terms with n = 5
def aupto2ndigits(n): return(sorted(set(i*int(s[::-1]) for i in range(12, 10**n) if i%10 != 0 and (s:=str(i)) != s[::-1])))
print(aupto2ndigits(2))
CROSSREFS
Sequence in context: A104396 A207373 A072443 * A062904 A032800 A024749
KEYWORD
base,nonn
AUTHOR
Tanya Khovanova, May 30 2007
EXTENSIONS
Offset corrected by Stefano Spezia, Sep 07 2024
STATUS
approved