[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363843
a(n) is the number of isomorphism classes of genus 3 hyperelliptic curves over the finite field of order prime(n).
1
76, 526, 6508, 34228, 324562, 747004, 2849576, 4965266, 12896050, 41071144, 57316082, 138789292, 231850328, 294172382, 458893426, 836688844, 1430252626, 1689646684, 2700843026, 3609164734, 4146921368, 6155086706, 7879211410, 11169529016, 17176506056, 21022261804, 23187646130
OFFSET
1,1
LINKS
E. Nart, Counting hyperelliptic curves, Adv. Math. 221 (2009), no. 3, 774-787.
E. Nart and D. Sadornil, Hyperelliptic curves of genus three over finite fields of even characteristic, Finite Fields Appl. 10 (2004), no. 2, 198-220.
FORMULA
a(1) = 76, and for n > 1, a(n) = 2*prime(n)^5 + 2*prime(n)^3 - 2 - 2*(prime(n)^2 - prime(n))*[prime(n) == 3 (mod 4)] + 2*(prime(n)-1)*[prime(n) > 3] + 4*[prime(n) == 1 (mod 8)] + 12*[prime(n) == 1 (mod 7)] + 2*[prime(n) == 7] + 2*[prime(n) == 1 or 5 (mod 12)].
EXAMPLE
For n = 1, E. Nart and D. Sadornil showed that there are 76 genus 3 hyperelliptic curves over F_2, so a(1) = 76.
PROG
(Sage)
def a(n):
if n == 1: return 76
p = Primes()[n-1]
ans = 2*p^5 + 2*p^3 - 2
if p%4 == 3: ans -= 2*(p^2 - p)
if p > 3: ans += 2*(p - 1)
if p%8 == 1: ans += 4
if p%7 == 1: ans += 12
if p == 7: ans += 2
if p%12 in [1, 5]: ans += 2
return ans
CROSSREFS
Sequence in context: A234786 A234779 A264475 * A262790 A184680 A129626
KEYWORD
nonn
AUTHOR
Robin Visser, Jun 23 2023
STATUS
approved