[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157348
Positive numbers y such that y^2 is of the form x^2+(x+281)^2 with integer x.
3
229, 281, 365, 1009, 1405, 1961, 5825, 8149, 11401, 33941, 47489, 66445, 197821, 276785, 387269, 1152985, 1613221, 2257169, 6720089, 9402541, 13155745, 39167549, 54802025, 76677301, 228285205, 319409609, 446908061, 1330543681
OFFSET
1,1
COMMENTS
(-60, a(1)) and (A129626(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+281)^2 = y^2.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=229, a(2)=281, a(3)=365, a(4)=1009, a(5)=1405, a(6)=1961.
G.f.: x*(1-x)*(229+510*x+875*x^2+510*x^3+229*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 281*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (297+68*sqrt(2))/281 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (130803+73738*sqrt(2))/281^2 for n mod 3 = 1.
EXAMPLE
(-60, a(1)) = (-60, 229) is a solution: (-60)^2+(-60+281)^2 = 3600+48841 = 52441 = 229^2.
(A129626(1), a(2)) = (0, 281) is a solution: 0^2+(0+281)^2 = 78961 = 281^2.
(A129626(3), a(4)) = (559, 1009) is a solution: 559^2+(559+281)^2 = 312481+705600 = 1018081 = 1009^2.
PROG
(PARI) {forstep(n=-60, 200000000, [3, 1], if(issquare(2*n^2+562*n+78961, &k), print1(k, ", ")))}
CROSSREFS
Cf. A129626, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157349 (decimal expansion of (297+68*sqrt(2))/281), A157350 (decimal expansion of (130803+73738*sqrt(2))/281^2).
Sequence in context: A250237 A350165 A112847 * A142221 A142779 A139512
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 12 2009
STATUS
approved