[go: up one dir, main page]

login
A078938
Cube of lower triangular matrix of A056857 (successive equalities in set partitions of n).
16
1, 3, 1, 12, 6, 1, 57, 36, 9, 1, 309, 228, 72, 12, 1, 1866, 1545, 570, 120, 15, 1, 12351, 11196, 4635, 1140, 180, 18, 1, 88563, 86457, 39186, 10815, 1995, 252, 21, 1, 681870, 708504, 345828, 104496, 21630, 3192, 336, 24, 1, 5597643, 6136830, 3188268
OFFSET
0,2
COMMENTS
Cube of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Apr 08 2007. Base matrix in A011971, second power in A129321, third power in this entry, fourth power in A078939
First column gives A027710. Row sums give A078940.
Riordan array [exp(3*exp(x)-3),x], whose production matrix has e.g.f. exp(x*t)(t+3*exp(x)). [From Paul Barry, Nov 26 2008]
FORMULA
PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,sequentially read ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,sequentially read] - Gottfried Helms, Apr 08 2007
Exponential function of 3*Pascal's triangle (taken as a lower triangular matrix) divided by e^3: [A078938] = (1/e^3)*exp(3*[A007318]) = [A056857]^3.
EXAMPLE
Rows:
1,
3,1,
12,6,1,
57,36,9,1,
309,228,72,12,1,
1866,1545,570,120,15,1,
12351,11196,4635,1140,180,18,1,
...
PROG
(PARI) m=matpascal(5)-matid(6); pe=matid(6)+m/1! + m^2/2!+m^3/3!+m^4/4!+m^5/5! ; A = pe^3 - Gottfried Helms, Apr 08 2007
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 18 2002
EXTENSIONS
Entry revised by N. J. A. Sloane, Apr 25 2007
STATUS
approved