[go: up one dir, main page]

login
A078944
First column of A078939, the fourth power of lower triangular matrix A056857.
35
1, 4, 20, 116, 756, 5428, 42356, 355636, 3188340, 30333492, 304716148, 3218555700, 35618229364, 411717043252, 4957730174836, 62045057731892, 805323357485684, 10820999695801908, 150271018666120564, 2153476417340487476
OFFSET
0,2
COMMENTS
Also, the number of ways of placing n labeled balls into n unlabeled (but 4-colored) boxes. Binomial transform of this sequence is A078945 and a(n+1) = 4*A078945(n). - Paul D. Hanna, Dec 08 2003
First column of PE^4, where PE is given in A011971, second power in A078937, third power in A078938, fourth power in A078939. - Gottfried Helms, Apr 08 2007
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 4 labeled boxes. - Peter Bala, Mar 23 2013
Exponential self-convolution of A001861. - Vladimir Reshetnikov, Oct 06 2016
LINKS
Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. See Table 5.1. - From N. J. A. Sloane, Jan 04 2013
FORMULA
PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,1 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,1]. - Gottfried Helms, Apr 08 2007
E.g.f.: exp(4*(exp(x)-1)).
a(n) = exp(-4)*Sum_{k>=0} 4^k*k^n/k!. - Benoit Cloitre, Sep 25 2003
G.f.: 4*(x/(1-x))*A(x/(1-x)) = A(x) - 1; four times the binomial transform equals this sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
a(n) = Sum_{k = 0..n} 4^k*A048993(n, k); A048993: Stirling2 numbers. - Philippe Deléham, May 09 2004
G.f.: (G(0) - 1)/(x-1)/4 where G(k) = 1 - 4/(1-k*x)/(1-x/(x-1/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: T(0)/(1-4*x), where T(k) = 1 - 4*x^2*(k+1)/(4*x^2*(k+1) - (1-(k+4)*x)*(1-(k+5)*x)/T(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013
a(n) ~ n^n * exp(n/LambertW(n/4)-4-n) / (sqrt(1+LambertW(n/4)) * LambertW(n/4)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 4^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 07 2019
MAPLE
A056857 := proc(n, c) combinat[bell](n-1-c)*binomial(n-1, c) ; end: A078937 := proc(n, c) add( A056857(n, k)*A056857(k+1, c), k=0..n) ; end: A078938 := proc(n, c) add( A078937(n, k)*A056857(k+1, c), k=0..n) ; end: A078939 := proc(n, c) add( A078938(n, k)*A056857(k+1, c), k=0..n) ; end: A078944 := proc(n) A078939(n+1, 0) ; end: seq(A078944(n), n=0..25) ; # R. J. Mathar, May 30 2008
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0, 4^m,
add(b(n-1, max(m, j)), j=1..m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 03 2021
MATHEMATICA
Table[n!, {n, 0, 20}]CoefficientList[Series[E^(4E^x-4), {x, 0, 20}], x]
Table[BellB[n, 4], {n, 0, 20}] (* Vaclav Kotesovec, Mar 12 2014 *)
With[{nn=20}, CoefficientList[Series[Exp[4(Exp[x]-1)], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, May 03 2022 *)
PROG
(Sage) expnums(20, 4) # Zerinvary Lajos, Jun 26 2008
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 18 2002
EXTENSIONS
More terms from R. J. Mathar, May 30 2008
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar
STATUS
approved