OFFSET
0,2
COMMENTS
First column gives A001861 (values of Bell polynomials); row sums gives A035009 (STIRLING transform of powers of 2);
Square of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Apr 08 2007. Base matrix in A011971 and in A056857, second power in this entry, third power in A078938, fourth power in A078939
Riordan array [exp(2*exp(x)-2),x], whose production matrix has e.g.f. exp(x*t)(t+2*exp(x)). [Paul Barry, Nov 26 2008]
FORMULA
PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,column] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1] - Gottfried Helms, Apr 08 2007
EXAMPLE
[0] 1;
[1] 2, 1;
[2] 6, 4, 1;
[3] 22, 18, 6, 1;
[4] 94, 88, 36, 8, 1;
[5] 454, 470, 220, 60, 10, 1;
[6] 2430, 2724, 1410, 440, 90, 12, 1;
[7] 14214, 17010, 9534, 3290, 770, 126, 14, 1;
[8] 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1;
MAPLE
# Computes triangle as a matrix M(dim, p).
with(LinearAlgebra): M := (n, p) -> local j, k; MatrixPower(subs(exp(1) = 1,
MatrixExponential(MatrixExponential(Matrix(n, n, [seq(seq(`if`(j = k + 1, j, 0),
k = 0..n-1), j = 0..n-1)])))), p): M(8, 2); # Peter Luschny, Mar 28 2024
PROG
(PARI) k=9; m=matpascal(k)-matid(k+1); pe=matid(k+1)+sum(j=1, k, m^j/j!); A=pe^2; A /* Gottfried Helms, Apr 08 2007; amended by Georg Fischer Mar 28 2024 */
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 18 2002
EXTENSIONS
Entry revised by N. J. A. Sloane, Apr 25 2007
a(38) corrected by Georg Fischer, Mar 28 2024
STATUS
approved