OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 899
Index entries for linear recurrences with constant coefficients, signature (1,0,2,-1).
FORMULA
G.f.: (1-x)/(1 - x - 2*x^3 + x^4).
a(n) = a(n-1) + 2*a(n-3) - a(n-4), with a(0)=1, a(1)=0, a(2)=0, a(3)=2.
a(n) = Sum_{alpha=RootOf(1-z-2*z^3+z^4)} (1/643)*(-13 + 201*alpha - 38*alpha^2 - 18*alpha^3)*alpha^(-1-n).
MAPLE
spec:=[S, {S=Sequence(Prod(Z, Z, Union(Prod(Sequence(Z), Z), Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(coeff(series((1-x)/(1-x-2*x^3+x^4), x, n+1), x, n), n = 0..50); # G. C. Greubel, Oct 16 2019
MATHEMATICA
LinearRecurrence[{1, 0, 2, -1}, {1, 0, 0, 2}, 50] (* Harvey P. Dale, Apr 21 2011 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1-x)/(1-x-2*x^3+x^4)) \\ G. C. Greubel, Oct 16 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x-2*x^3+x^4) )); // G. C. Greubel, Oct 16 2019
(Sage)
def A052916_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1-x-2*x^3+x^4)).list()
A052916_list(50) # G. C. Greubel, Oct 16 2019
(GAP) a:=[1, 0, 0, 2];; for n in [5..50] do a[n]:=a[n-1]+2*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Oct 16 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved