[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052917
Expansion of 1/(1-3*x-x^4).
3
1, 3, 9, 27, 82, 249, 756, 2295, 6967, 21150, 64206, 194913, 591706, 1796268, 5453010, 16553943, 50253535, 152556873, 463123629, 1405924830, 4268028025, 12956640948, 39333046473, 119405064249, 362483220772, 1100406303264
OFFSET
0,2
COMMENTS
a(n) equals the number of n-length words on {0,1,2,3} such that 0 appears only in a run whose length is a multiple of 4. - Milan Janjic, Feb 17 2015
LINKS
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3
FORMULA
G.f.: 1/(1 - 3*x - x^4).
a(n) = 3*a(n-1) + a(n-4), with a(0)=1, a(1)=3, a(2)=9, a(3)=27.
a(n) = Sum_{alpha=RootOf(-1 + 3*z + z^4)} (1/2443)*(729 + 64*alpha + 144*alpha^2 + 324*alpha^3)*alpha^(-1-n).
MAPLE
spec := [S, {S=Sequence(Union(Z, Z, Z, Prod(Z, Z, Z, Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(coeff(series(x^4/((1+2*x)*(2*x^3+x^2-2*x+1)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
MATHEMATICA
CoefficientList[Series[1/(1-3x-x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 20 2015 *)
RecurrenceTable[{a[0]==1, a[1]==3, a[2]==9, a[3]==27, a[n]==3a[n-1] +a[n -4]}, a[n], {n, 0, 30}] (* Bruno Berselli, Feb 20 2015 *)
PROG
(PARI) Vec(1/(1-3*x-x^4) + O(x^30)) \\ Michel Marcus, Feb 17 2015
(Magma) [n le 4 select 3^(n-1) else 3*Self(n-1)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 20 2015
(Sage)
def A052917_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/(1-3*x-x^4)).list()
A052917_list(30) # G. C. Greubel, Oct 16 2019
(GAP) a:=[1, 3, 9, 27];; for n in [5..30] do a[n]:=3*a[n-1]+a[n-4]; od; a; # G. C. Greubel, Oct 16 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 27); Coefficients(R!( 1/(1-3*x-x^4) )); // Marius A. Burtea, Oct 16 2019
CROSSREFS
Sequence in context: A351343 A078226 A083591 * A099786 A237272 A192909
KEYWORD
nonn,easy
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved