[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156576
Square array T(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} (i+1)*(k+1)^i ) with T(n, 0) = n!, read by antidiagonals.
1
1, 1, 1, 1, 1, 2, 1, 1, 5, 6, 1, 1, 7, 85, 24, 1, 1, 9, 238, 4165, 120, 1, 1, 11, 513, 33796, 537285, 720, 1, 1, 13, 946, 160569, 18486412, 172468485, 5040, 1, 1, 15, 1573, 554356, 255786417, 37065256060, 132628264965, 40320, 1, 1, 17, 2430, 1549405, 2057215116, 1979019508329, 263459840074480, 237802479082245, 362880
OFFSET
0,6
FORMULA
T(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} (i+1)*(k+1)^i ) with T(n, 0) = n! (square array).
T(n, k) = (1/k^(2*n))*Product_{j=1..n} (1 -(j+1)*(k+1)^j +j*(k+1)^(j+1)) with T(n, 0) = n! (square array). - G. C. Greubel, Jun 28 2021
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, 1 ...;
1, 1, 1, 1, 1, 1 ...;
2, 5, 7, 9, 11, 13 ...;
6, 85, 238, 513, 946, 1573 ...;
24, 4165, 33796, 160569, 554356, 1549405 ...;
120, 537285, 18486412, 255786417, 2057215116, 11566308325 ...;
Antidiagonal triangle begins as:
1;
1, 1;
1, 1, 2;
1, 1, 5, 6;
1, 1, 7, 85, 24;
1, 1, 9, 238, 4165, 120;
1, 1, 11, 513, 33796, 537285, 720;
1, 1, 13, 946, 160569, 18486412, 172468485, 5040;
1, 1, 15, 1573, 554356, 255786417, 37065256060, 132628264965, 40320;
MATHEMATICA
(* First program *)
T[n_, k_]:= T[n, k]= If[k==0, n!, Product[Sum[(i+1)*(k+1)^i, {i, 0, j-1}] {j, n}]];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 28 2021 *)
(* Second program *)
T[n_, k_]:= If[k==0, n!, Product[1 -(j+1)*(k+1)^j +j*(k+1)^(j+1), {j, n}]/k^(2*n)];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
PROG
(Magma)
A156576:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (1/k^(2*n))*(&*[1 -(j+1)*(k+1)^j +j*(k+1)^(j+1): j in [1..n]]) >;
[A156576(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
(Sage)
def A156576(n, k): return factorial(n) if (k==0) else (1/k^(2*n))*product( 1 -(j+1)*(k+1)^j +j*(k+1)^(j+1) for j in [1..n])
flatten([[A156576(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
CROSSREFS
Sequence in context: A086856 A052916 A326048 * A293219 A266572 A266681
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 10 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 28 2021
STATUS
approved