OFFSET
0,6
LINKS
G. C. Greubel, Antidiagonal rows n = 0..50, flattened
FORMULA
T(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} (i+1)*(k+1)^i ) with T(n, 0) = n! (square array).
T(n, k) = (1/k^(2*n))*Product_{j=1..n} (1 -(j+1)*(k+1)^j +j*(k+1)^(j+1)) with T(n, 0) = n! (square array). - G. C. Greubel, Jun 28 2021
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, 1 ...;
1, 1, 1, 1, 1, 1 ...;
2, 5, 7, 9, 11, 13 ...;
6, 85, 238, 513, 946, 1573 ...;
24, 4165, 33796, 160569, 554356, 1549405 ...;
120, 537285, 18486412, 255786417, 2057215116, 11566308325 ...;
Antidiagonal triangle begins as:
1;
1, 1;
1, 1, 2;
1, 1, 5, 6;
1, 1, 7, 85, 24;
1, 1, 9, 238, 4165, 120;
1, 1, 11, 513, 33796, 537285, 720;
1, 1, 13, 946, 160569, 18486412, 172468485, 5040;
1, 1, 15, 1573, 554356, 255786417, 37065256060, 132628264965, 40320;
MATHEMATICA
(* First program *)
T[n_, k_]:= T[n, k]= If[k==0, n!, Product[Sum[(i+1)*(k+1)^i, {i, 0, j-1}] {j, n}]];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 28 2021 *)
(* Second program *)
T[n_, k_]:= If[k==0, n!, Product[1 -(j+1)*(k+1)^j +j*(k+1)^(j+1), {j, n}]/k^(2*n)];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
PROG
(Magma)
A156576:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (1/k^(2*n))*(&*[1 -(j+1)*(k+1)^j +j*(k+1)^(j+1): j in [1..n]]) >;
[A156576(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
(Sage)
def A156576(n, k): return factorial(n) if (k==0) else (1/k^(2*n))*product( 1 -(j+1)*(k+1)^j +j*(k+1)^(j+1) for j in [1..n])
flatten([[A156576(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 10 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 28 2021
STATUS
approved