[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033620
Numbers all of whose prime factors are palindromes.
19
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 101, 105, 108, 110, 112, 120, 121, 125, 126, 128, 131
OFFSET
1,2
COMMENTS
Multiplicative closure of A002385; A051038 and A046368 are subsequences. - Reinhard Zumkeller, Apr 11 2011
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p in A002385} p/(p-1) = 5.0949... - Amiram Eldar, Sep 27 2020
EXAMPLE
10 = 2 * 5 is a term since both 2 and 5 are palindromes.
110 = 2 * 5 * 11 is a term since 2, 5 and 11 are palindromes.
MAPLE
N:= 5: # to get all terms of up to N digits
digrev:= proc(t) local L; L:= convert(t, base, 10);
add(L[-i-1]*10^i, i=0..nops(L)-1);
end proc:
PPrimes:= [2, 3, 5, 7, 11]:
for d from 3 to N by 2 do
m:= (d-1)/2;
PPrimes:= PPrimes, select(isprime, [seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]);
od:
PPrimes:= map(op, [PPrimes]):
M:= 10^N:
B:= Vector(M);
B[1]:= 1:
for p in PPrimes do
for k from 1 to floor(log[p](M)) do
R:= [$1..floor(M/p^k)];
B[p^k*R] := B[p^k*R] + B[R]
od
od:
select(t -> B[t] > 0, [$1..M]); # Robert Israel, Jul 05 2015
# alternative
isA033620:= proc(n)
for d in numtheory[factorset](n) do
if not isA002113(op(1, d)) then
return false;
end if;
end do;
true ;
end proc:
for n from 1 to 300 do
if isA033620(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Sep 09 2015
MATHEMATICA
palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[131], And@@palQ/@First/@FactorInteger[#]&] (* Jayanta Basu, Jun 05 2013 *)
PROG
(Haskell)
a033620 n = a033620_list !! (n-1)
a033620_list = filter chi [1..] where
chi n = a136522 spf == 1 && (n' == 1 || chi n') where
n' = n `div` spf
spf = a020639 n -- cf. A020639
-- Reinhard Zumkeller, Apr 11 2011
(PARI) ispal(n)=n=digits(n); for(i=1, #n\2, if(n[i]!=n[#n+1-i], return(0))); 1
is(n)=if(n<13, n>0, vecmin(apply(ispal, factor(n)[, 1]))) \\ Charles R Greathouse IV, Feb 06 2013
(Python)
from sympy import isprime, primefactors
def pal(n): s = str(n); return s == s[::-1]
def ok(n): return all(pal(f) for f in primefactors(n))
print(list(filter(ok, range(1, 132)))) # Michael S. Branicky, Apr 06 2021
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, May 17 1998
STATUS
approved