[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033637
Products of partition numbers A000041(n).
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 101, 105, 108, 110, 112, 120, 121, 125, 126, 128, 132, 135, 140
OFFSET
1,2
COMMENTS
Range of A000688.
LINKS
MAPLE
with(combinat): A000041:=proc(n) options remember: RETURN(numbpart(n)): end: partdiv:=proc(m, i) local j, q, f: f:=0: for j from i by -1 to 2 while(f=0) do if(irem(m, A000041(j))=0) then q:=iquo(m, A000041(j)): if(q=1) then RETURN(1) else f:=partdiv(q, j) fi fi od: RETURN(f): end: for i from 2 to 15 do for n from A000041(i) to A000041(i+1)-1 do m:=partdiv(n, i): if m=1 then printf("%d, ", n) fi od od: # C. Ronaldo
MATHEMATICA
p0 = Table[ PartitionsP[n], {n, 1, 40 (* ~ 1148 terms *)}] ; f[p_] := Select[ Outer[Times, p, p] // Flatten // Union, # <= Last[p0] &]; FixedPoint[f, p0] (* Jean-François Alcover, Oct 03 2013 *)
PROG
(PARI) is(n, mx=n)=if(n>>valuation(n, 2)==1, return(1)); for(i=3, n, my(p=numbpart(i), m=n); while(m%p==0, if(is(m/=p), return(1))); if(p>n, return(0))) \\ Charles R Greathouse IV, Jun 28 2013
CROSSREFS
Cf. A046064.
Sequence in context: A033892 A033620 A376858 * A084034 A084347 A051038
KEYWORD
nonn,easy
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 02 2005
STATUS
approved