Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Apr 07 2021 00:23:45
%S 1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,18,20,21,22,24,25,27,28,30,32,33,
%T 35,36,40,42,44,45,48,49,50,54,55,56,60,63,64,66,70,72,75,77,80,81,84,
%U 88,90,96,98,99,100,101,105,108,110,112,120,121,125,126,128,131
%N Numbers all of whose prime factors are palindromes.
%C Multiplicative closure of A002385; A051038 and A046368 are subsequences. - _Reinhard Zumkeller_, Apr 11 2011
%H Ivan Neretin, <a href="/A033620/b033620.txt">Table of n, a(n) for n = 1..10550</a>
%H <a href="/index/Pri#prime_factors">Index entries sequences related to prime factors</a>
%F Sum_{n>=1} 1/a(n) = Product_{p in A002385} p/(p-1) = 5.0949... - _Amiram Eldar_, Sep 27 2020
%e 10 = 2 * 5 is a term since both 2 and 5 are palindromes.
%e 110 = 2 * 5 * 11 is a term since 2, 5 and 11 are palindromes.
%p N:= 5: # to get all terms of up to N digits
%p digrev:= proc(t) local L; L:= convert(t,base,10);
%p add(L[-i-1]*10^i,i=0..nops(L)-1);
%p end proc:
%p PPrimes:= [2,3,5,7,11]:
%p for d from 3 to N by 2 do
%p m:= (d-1)/2;
%p PPrimes:= PPrimes, select(isprime,[seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]);
%p od:
%p PPrimes:= map(op,[PPrimes]):
%p M:= 10^N:
%p B:= Vector(M);
%p B[1]:= 1:
%p for p in PPrimes do
%p for k from 1 to floor(log[p](M)) do
%p R:= [$1..floor(M/p^k)];
%p B[p^k*R] := B[p^k*R] + B[R]
%p od
%p od:
%p select(t -> B[t] > 0, [$1..M]); # _Robert Israel_, Jul 05 2015
%p # alternative
%p isA033620:= proc(n)
%p for d in numtheory[factorset](n) do
%p if not isA002113(op(1,d)) then
%p return false;
%p end if;
%p end do;
%p true ;
%p end proc:
%p for n from 1 to 300 do
%p if isA033620(n) then
%p printf("%d,",n) ;
%p end if;
%p end do: # _R. J. Mathar_, Sep 09 2015
%t palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[131],And@@palQ/@First/@FactorInteger[#]&] (* _Jayanta Basu_, Jun 05 2013 *)
%o (Haskell)
%o a033620 n = a033620_list !! (n-1)
%o a033620_list = filter chi [1..] where
%o chi n = a136522 spf == 1 && (n' == 1 || chi n') where
%o n' = n `div` spf
%o spf = a020639 n -- cf. A020639
%o -- _Reinhard Zumkeller_, Apr 11 2011
%o (PARI) ispal(n)=n=digits(n);for(i=1,#n\2,if(n[i]!=n[#n+1-i],return(0)));1
%o is(n)=if(n<13,n>0,vecmin(apply(ispal,factor(n)[,1]))) \\ _Charles R Greathouse IV_, Feb 06 2013
%o (Python)
%o from sympy import isprime, primefactors
%o def pal(n): s = str(n); return s == s[::-1]
%o def ok(n): return all(pal(f) for f in primefactors(n))
%o print(list(filter(ok, range(1, 132)))) # _Michael S. Branicky_, Apr 06 2021
%Y Cf. A002113, A002385, A046368, A051038.
%K nonn,base,easy
%O 1,2
%A _N. J. A. Sloane_, May 17 1998