[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033617
Coordination sequence T2 for Zeolite Code TSC.
3
1, 4, 9, 17, 28, 41, 56, 73, 93, 117, 146, 180, 216, 253, 291, 329, 369, 414, 466, 524, 586, 650, 712, 773, 836, 902, 973, 1051, 1136, 1224, 1313, 1403, 1492, 1581, 1673, 1769, 1870, 1978, 2093, 2211, 2329, 2447, 2563, 2678, 2797, 2923, 3057, 3198, 3344
OFFSET
0,2
COMMENTS
First 127 terms computed by Davide M. Proserpio using ToposPro.
LINKS
R. W. Grosse-Kunstleve, Table of n, a(n) for n = 0..1000 (terms 0..127 from Davide M. Proserpio)
V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio, Applied Topological Analysis of Crystal Structures with the Program Package ToposPro, Crystal Growth & Design, Vol. 14, No. 7 (2014), 3576-3586.
International Zeolite Association, Database of Zeolite Structures
Reticular Chemistry Structure Resource (RCSR), The tsc tiling (or net)
FORMULA
G.f.: (1 + x)^3 * (1 - x + x^2) * (1 + x^2) * (1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 3*x^8 + x^9 + 2*x^10 + x^11 + x^12 + x^13 + x^14 + x^16) / ((1 - x)^3 * (1 - x + x^2 - x^3 + x^4) * (1 + x + x^2 + x^3 + x^4) * (1 + x^3 + x^6) * (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, Dec 20 2015
From N. J. A. Sloane, Feb 22 2018 (Start)
The following is another conjectured recurrence, found by gfun, using the command rec:=gfun[listtorec](t1, a(n)); (where t1 is a list of the initial terms) suggested by Paul Zimmermann.
Note: this should not be used to extend the sequence.
0 = (-38*n^3-836*n^2-5367*n)*a(n)+(-76*n^2-798*n)*a(n+1)+(-38*n^3-912*n^2-6165*n)*a(n+2)+(-38*n^3-988*n^2-6963*n)*a(n+3)+(-38*n^3-1064*n^2-7761*n)*a(n+4)+(-38*n^3-1140*n^2-8559*n)*a(n+5)+(-76*n^3-2052*n^2-14724*n)*a(n+6)
+ (-532*n^2-5586*n)*a(n+7)+(-76*n^3-2204*n^2-16320*n)*a(n+8)+(-684*n^2-7182*n)*a(n+9)+(-684*n^2-7182*n)*a(n+10)+(-684*n^2-7182*n)*a(n+11)+(-684*n^2-7182*n)*a(n+12)+(76*n^3+988*n^2+3552*n)*a(n+13)+(-532*n^2-5586*n)*a(n+14)
+ (76*n^3+1140*n^2+5148*n)*a(n+15)+(38*n^3+456*n^2+1377*n)*a(n+16)+(38*n^3+532*n^2+2175*n)*a(n+17)+(38*n^3+608*n^2+2973*n)*a(n+18)
+ (38*n^3+684*n^2+3771*n)*a(n+19)+(-76*n^2-798*n)*a(n+20)+(38*n^3+760*n^2+4569*n)*a(n+21), with
a(0) = 1, a(1) = 4, a(2) = 9, a(3) = 17, a(4) = 28, a(5) = 41, a(6) = 56, a(7) = 73, a(8) = 93, a(9) = 117, a(10) = 146, a(11) = 180, a(12) = 216, a(13) = 253, a(14) = 291, a(15) = 329, a(16) = 369, a(17) = 414, a(18) = 466, a(19) = 524, a(20) = 586, a(21) = 650.
(End)
CROSSREFS
Cf. A033616, A299903 (partial sums).
Sequence in context: A019572 A048205 A078567 * A033613 A033608 A008577
KEYWORD
nonn
STATUS
approved