[go: up one dir, main page]

login
A007392
Number of strict 3rd-order maximal independent sets in cycle graph.
(Formerly M3727)
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 12, 0, 21, 5, 32, 17, 45, 38, 65, 70, 99, 115, 156, 180, 247, 279, 385, 435, 590, 682, 896, 1067, 1360, 1657, 2073, 2553, 3173, 3913, 4865, 5986, 7455, 9159, 11407, 14024, 17434, 21479, 26636, 32886, 40705, 50320
OFFSET
1,10
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs", Journal of Graph Theory, submitted, 1994, apparently unpublished.
FORMULA
Conjecture: a(n) = 3*a(n-2) - 3*a(n-4) + a(n-5) + a(n-6) - 2*a(n-7) + a(n-9) with g.f. x^10*(-5+3*x^2)/((x^5+x^2-1)*(x-1)^2*(1+x)^2). - R. J. Mathar, Oct 30 2009
a(n) = A007387(n) - b(n) where b(1) = 0, b(2*n+1) = 2*n+1, b(2*n) = 2. - Sean A. Irvine, Jan 02 2018
CROSSREFS
Cf. A007387.
Sequence in context: A340950 A156550 A208477 * A292105 A052401 A222946
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Jan 02 2018
STATUS
approved