[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007389
7th-order maximal independent sets in cycle graph.
(Formerly M0424)
4
0, 2, 3, 2, 5, 2, 7, 2, 9, 2, 11, 2, 13, 2, 15, 2, 17, 11, 19, 22, 21, 35, 23, 50, 25, 67, 36, 86, 58, 107, 93, 130, 143, 155, 210, 191, 296, 249, 403, 342, 533, 485, 688, 695, 879, 991, 1128, 1394, 1470, 1927, 1955, 2615, 2650, 3494, 3641, 4622, 5035, 6092, 6962, 8047
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, J. Graph Theory, submitted, 1994, apparently unpublished.
LINKS
R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
FORMULA
Empirical g.f.: x^2*(7*x^14 + 5*x^12 + 3*x^10 - 2*x^7 - 2*x^5 - 2*x^3 - 3*x - 2) / (x^9 + x^2 - 1). - Colin Barker, Mar 29 2014
Theorem: a(n) = Sum_{j=0..floor((n-g)/(2*g))} (2*n/(n-2*(g-2)*j-(g-2))) * Hypergeometric2F1([-(n-2g*j-g)/2,-(2j+1)], [1], 1), g = 9, n >= g and n an odd integer. - Richard Turk, Oct 14 2019 For proof see attached text file.
CROSSREFS
KEYWORD
nonn
STATUS
approved