[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007387
Number of 3rd-order maximal independent sets in cycle graph.
(Formerly M0426)
5
0, 2, 3, 2, 5, 2, 7, 2, 9, 7, 11, 14, 13, 23, 20, 34, 34, 47, 57, 67, 91, 101, 138, 158, 205, 249, 306, 387, 464, 592, 713, 898, 1100, 1362, 1692, 2075, 2590, 3175, 3952, 4867, 6027, 7457, 9202, 11409, 14069, 17436, 21526, 26638, 32935, 40707, 50371, 62233
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs," J. Graph Theory, submitted, 1994.
LINKS
R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
FORMULA
For n >= 9: a(n) = a(n-2) + a(n-5) per A133394. - G. Reed Jameson (Reedjameson(AT)yahoo.com), Dec 13 2007, Dec 16 2007
G.f.: x^2*(2 + 3*x + 2*x^3 - 3*x^6)/(1 - x^2 - x^5). - R. J. Mathar, Oct 30 2009
a(n) = Sum_{j=0..floor((n-g)/(2*g))} (2*n/(n-2*(g-2)*j-(g-2))) * Hypergeometric2F1([-(n-2g*j-g)/2,-(2j+1)], [1], 1), with g = 5, n >= g, and n an odd integer. - Richard Turk, Oct 14 2019
MAPLE
seq(coeff(series(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), x, n+1), x, n), n = 1..50); # G. C. Greubel, Oct 19 2019
MATHEMATICA
Rest[CoefficientList[Series[x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), {x, 0, 50}], x]] (* Harvey P. Dale, Oct 23 2011 *)
PROG
(PARI) my(x='x+O('x^50)); concat([0], Vec(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5))) \\ G. C. Greubel, Oct 19 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5) )); // G. C. Greubel, Oct 19 2019
(Sage)
def A007387_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5)).list()
a=A007387_list(50); a[1:] # G. C. Greubel, Oct 19 2019
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Harvey P. Dale, Oct 23 2011
STATUS
approved