OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs," J. Graph Theory, submitted, 1994.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
FORMULA
For n >= 9: a(n) = a(n-2) + a(n-5) per A133394. - G. Reed Jameson (Reedjameson(AT)yahoo.com), Dec 13 2007, Dec 16 2007
G.f.: x^2*(2 + 3*x + 2*x^3 - 3*x^6)/(1 - x^2 - x^5). - R. J. Mathar, Oct 30 2009
a(n) = Sum_{j=0..floor((n-g)/(2*g))} (2*n/(n-2*(g-2)*j-(g-2))) * Hypergeometric2F1([-(n-2g*j-g)/2,-(2j+1)], [1], 1), with g = 5, n >= g, and n an odd integer. - Richard Turk, Oct 14 2019
MAPLE
seq(coeff(series(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), x, n+1), x, n), n = 1..50); # G. C. Greubel, Oct 19 2019
MATHEMATICA
Rest[CoefficientList[Series[x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), {x, 0, 50}], x]] (* Harvey P. Dale, Oct 23 2011 *)
PROG
(PARI) my(x='x+O('x^50)); concat([0], Vec(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5))) \\ G. C. Greubel, Oct 19 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5) )); // G. C. Greubel, Oct 19 2019
(Sage)
def A007387_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5)).list()
a=A007387_list(50); a[1:] # G. C. Greubel, Oct 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Harvey P. Dale, Oct 23 2011
STATUS
approved