[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007390
Number of strict (-1)st-order maximal independent sets in cycle graph.
(Formerly M3257)
0
0, 0, 0, 4, 5, 15, 21, 44, 66, 120, 187, 319, 507, 840, 1348, 2204, 3553, 5775, 9329, 15124, 24454, 39600, 64055, 103679, 167735, 271440, 439176, 710644, 1149821, 1860495, 3010317, 4870844, 7881162, 12752040, 20633203, 33385279, 54018483
OFFSET
1,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, ``K-th order maximal independent sets in path and cycle graphs,'' J. Graph Theory, submitted, 1994.
FORMULA
a(n) = A000204(n) - b(n) where b(1) = 1, b(2*n+1) = 2*n+2, b(2*n) = 3. - Sean A. Irvine, Jan 02 2018
Conjectures from Colin Barker, Jun 14 2019: (Start)
G.f.: x^4*(4 + x - 2*x^2 - x^3) / ((1 - x)^2*(1 + x)^2*(1 - x - x^2)).
a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 3*a(n-4) + a(n-5) + a(n-6) for n>7.
(End)
CROSSREFS
Sequence in context: A002509 A230983 A100234 * A037955 A225121 A267991
KEYWORD
nonn
EXTENSIONS
a(18) corrected and more terms from Sean A. Irvine, Jan 02 2018
STATUS
approved