[go: up one dir, main page]

login
A006139
n*a(n) = 2*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2) with a(0) = 1.
(Formerly M1849)
42
1, 2, 8, 32, 136, 592, 2624, 11776, 53344, 243392, 1116928, 5149696, 23835904, 110690816, 515483648, 2406449152, 11258054144, 52767312896, 247736643584, 1164829376512, 5484233814016, 25852072517632, 121997903495168
OFFSET
0,2
COMMENTS
a(n) = number of Delannoy paths (A001850) from (0,0) to (n,n) in which every Northeast step is immediately preceded by an East step. - David Callan, Mar 14 2004
The Hankel transform (see A001906 for definition) of this sequence is A036442 : 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
In general, 1/sqrt(1-4*r*x-4*r*x^2) has e.g.f. exp(2rx)BesselI(0,2r*sqrt((r+1)/r)x), a(n) = Sum_{k=0..n} C(2k,k)*C(k,n-k)*r^k, gives the central coefficient of (1+(2r)x+r(r+1)x^2) and is the (2r)-th binomial transform of 1/sqrt(1-8*C(n+1,2)x^2). - Paul Barry, Apr 28 2005
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H and U steps can have two colors. - N-E. Fahssi, Feb 05 2008
Self-convolution of a(n)/2^n gives Pell numbers A000129(n+1). - Vladimir Reshetnikov, Oct 10 2016
This sequence gives the integer part of an integral approximation to Pi, and also appears in Frits Beukers's "A Rational Approach to Pi" (cf. Links, Example). Despite quality M ~ 0.9058... reported by Beukers, measurements between n = 10000 and 30000 lead to a contentious quality estimate, M ~ 0.79..., at the 99% confidence level. In "Searching for Apéry-Style Miracles" Doron Zeilberger Quotes that M = 0.79119792... and also gives a closed form. The same rational approximation to Pi also follows from time integration on a quartic Hamiltonian surface, 2*H=(q^2+p^2)*(1-4*q*(q-p)). - Bradley Klee, Jul 19 2018, updated Mar 17 2019
Diagonal of rational function 1/(1 - (x + y + x*y^2)). - Gheorghe Coserea, Aug 06 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
Frits Beukers, A rational approach to Pi, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 377.
Dario Castellanos, A generalization of Binet's formula and some of its consequences, Fib. Quart., 27 (1989), 424-438.
Maciej Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv:1410.5747 [math.CO], 2014.
Shalosh B. Ekhad and Doron Zeilberger, Searching for Apéry-Style Miracles [Using, Inter-Alia, the Amazing Almkvist-Zeilberger Algorithm], arXiv:1405.4445 [math.NT], 2014.
Bradley Klee, Approximating Pi with Trigonometric-Polynomial Integrals, Wolfram Demonstrations, July 27, 2018.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
a(n) = Sum_{k=0..n} C(2*k, k)*C(k, n-k). - Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
G.f.: 1/(1-4x-4x^2)^(1/2); also, a(n) is the central coefficient of (1+2x+2x^2)^n. - Paul D. Hanna, Jun 01 2003
Inverse binomial transform of central Delannoy numbers A001850. - David Callan, Mar 14 2004
E.g.f.: exp(2*x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(2k,k)*2^(n-k). - Paul Barry, Sep 19 2006
a(n) ~ 2^(n - 3/4) * (1 + sqrt(2))^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 05 2012, simplified Jan 31 2023
G.f.: 1/(1 - 2*x*(1+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1+x)/(k+1 - x*(1+x)*(2*k+2)*(4*k+3)/(2*x*(1+x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
a(n) = 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2). - Peter Luschny, Sep 18 2014
0 = a(n)*(+16*a(n+1) + 24*a(n+2) - 8*a(n+3)) + a(n+1)*(+8*a(n+1) + 16*a(n+2) - 6*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Oct 13 2016
It appears that Pi/2 = Sum_{n >= 1} (-1)^(n-1)*4^n/(n*a(n-1)*a(n)). - Peter Bala, Feb 20 2017
G.f.: G(x) = (1/(2*Pi))*Integral_{y=0..2*Pi} 1/(1-x*(4*(sin(y)-cos(y))*sin(y)))*dy, also satisfies: (2+4*x)*G(x)-(1-4*x-4*x^2)*G'(x)=0. - Bradley Klee, Jul 19 2018
EXAMPLE
G.f. = 1 + 2*x + 8*x^2 + 32*x^3 + 136*x^4 + 592*x^5 + 2624*x^6 + 11776*x^7 + ...
J_3 = Integral_{y=0..Pi/4} 4*(4*(sin(y)-cos(y))*sin(y))^3*dy = 32*Pi - (304/3), |J_3| < 1. - Bradley Klee, Jul 19 2018
MAPLE
seq(add(binomial(2*k, k)*binomial(k, n-k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
A006139 := n -> 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2):
seq(simplify(A006139(n)), n=0..29); # Peter Luschny, Sep 18 2014
MATHEMATICA
Table[SeriesCoefficient[1/(1-4x-4x^2)^(1/2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 05 2012 *)
Table[Abs[LegendreP[n, I]] 2^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
Table[Sum[Binomial[2*k, k]*Binomial[k, n - k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Feb 28 2017 *)
a[n_] := If[n == 0, 1, Coefficient[(1 + 2 x + 2 x^2)^n, x^n]] (* Emanuele Munarini, Aug 04 2017 *)
CoefficientList[Series[1/Sqrt[(-4 x^2 - 4 x + 1)], {x, 0, 24}], x] (* Robert G. Wilson v, Jul 28 2018 *)
PROG
(PARI) for(n=0, 30, t=polcoeff((1+2*x+2*x^2)^n, n, x); print1(t", "))
(PARI) for(n=0, 25, print1(sum(k=0, n, binomial(2*k, k)*binomial(k, n-k)), ", ")) \\ G. C. Greubel, Feb 28 2017
(PARI) {a(n) = (-2*I)^n * pollegendre(n, I)}; /* Michael Somos, Aug 04 2018 */
(Maxima) a(n) := coeff(expand((1+2*x+2*x^2)^n), x, n);
makelist(a(n), n, 0, 12); /* Emanuele Munarini, Aug 04 2017 */
(GAP) a:=[1, 2];; for n in [3..25] do a[n]:=1/(n-1)*(2*(2*n-3)*a[n-1]+4*(n-2)*a[n-2]); od; a; # Muniru A Asiru, Aug 06 2018
CROSSREFS
First column of A110446. A higher-quality Pi approximation: A123178.
Sequence in context: A150830 A150831 A084607 * A150832 A150833 A198760
KEYWORD
nonn,easy
STATUS
approved