editing
approved
editing
approved
a(n) ~ (2+2^(n - 3/4) * (1 + sqrt(2))^(n + 1/sqrt((4-2*) / sqrt(2))*Pi*n). - Vaclav Kotesovec, Oct 05 2012, simplified Jan 31 2023
approved
editing
editing
approved
This sequence gives the integer part of an integral approximation to Pi, and also appears in Frits Beukers's "A Rational Approach to Pi" (cf. Links, Example). Despite quality M ~ 0.9058... reported by Beukers, measurements between n = 10000 and 30000 lead to a contentious quality estimate, M ~ 0.79..., at the 99% confidence level. In "Searching for Apéry-Style Miracles" Doron Zeilberger Quotes that M = 0.79119792... and also gives a closed form. The same rational approximation to Pi also follows from time integration on a quartic Hamiltonian surface, 2*H=(q^2+p^2)*(1-4*q*(q-p)). - Bradley Klee, Jul 19 2018, updated Mar 17 21092019
seq( sumadd('binomial(2*k, k)*binomial(k, n-k)', ', k'=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
A006139 := n -> 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2); :
seq(round(evalfsimplify(A006139(n), 99)), n=0..29); # Peter Luschny, Sep 18 2014
proposed
editing
editing
proposed
F. Frits Beukers, <a href="https://dspace.library.uu.nl/handle/1874/26398">A rational approach to Pi</a>, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 377.
D. Dario Castellanos, <a href="http://www.fq.math.ca/Scanned/27-5/castellanos.pdf">A generalization of Binet's formula and some of its consequences</a>, Fib. Quart., 27 (1989), 424-438.
M. Maciej Dziemianczuk, <a href="http://arxiv.org/abs/1410.5747">On Directed Lattice Paths With Additional Vertical Steps</a>, arXiv:1410.5747 [math.CO], 2014.
S. Shalosh B. Ekhad and D. Doron Zeilberger, <a href="https://arxiv.org/abs/1405.4445">Searching for Apéry-Style Miracles [Using, Inter-Alia, the Amazing Almkvist-Zeilberger Algorithm]</a>, arXiv:1405.4445 [math.NT], 2014.
B. Bradley Klee, <a href="http://demonstrations.wolfram.com/ApproximatingPiWithTrigonometricPolynomialIntegrals
proposed
editing
editing
proposed
S. B. Ekhad and D. Zeilberger, <a href="https://arxiv.org/abs/1405.4445">Searching for Apéry-Style Miracles</a>, arXiv:1405.4445 [math.NT], 2014.
proposed
editing
editing
proposed